HF ALL BAND TRANSCEIVER 1c-730

MAINTENANCE MANUAL

ICOM INCORPORATED
1-6-19. Kamikurazukuri Hirano-ku. Osaka, Japan Phone: (06) 793-5301
Telex: ICOM TR J63649

COOM ELROPE G.M.B.H.
Himmelgeister Strass 100
4000 Duesseldorf 1
4000 Duesseldo
West Germany
Phone:0211-346047
Phone:0211-34604
Telex:41-8588082
ICOM AMEREACA, MN.
2112 116th Awanue N.E
Bellovie. WA 98004
Phone [206)454-8155
Telex:230-152210 ICOM AMER BVUE
3331 Towerwood Dr., Suite 307
Dallas. Texas 75234
Phone: $2147620-2781$

ICOM CANADA LTD.
810 S.W. Marine Drive
Vancouver, BC Canade
Phone:\{604]321-1833
Tetex:21-454315
CON AUSTRAMA, PTY, Ltd
7 Duke Street, Windsor 3181
Victoria Australis
Phone:1031529-7582
Telex:71-35521 ICOMAS AA35521

TABLE OF CONTENTS

SECTION 1. SPECIFICATIONS 1-1
SECTION 2. OPERATING CONTROLS 2-1~4
SECTION 3. CIRCUIT DESCRIPTION 3-1~8
3-1 RECEIVING CIRCUITS 3-1
3-2 TRANSMITTING CIRCUITS 3-3
3-3 1st LOCAL OSCILLATOR CIRCUITS 3-6
3-4 DISPLAY UNIT 3-8
SECTION 4. INSIDE VIEWS 4-1~4
SECTION 5. BLOCK DIAGRAM 5-1
SECTION 6. OPTIONS INSTALLATION 6-1~9
SECTION 7. MECHANICAL PARTS AND DISASSEMBLY 7-1~23
SECTION 8. MAINTENANCE AND ADJUSTMENT 8-1~19
8-1 MEASURING INSTRUMENTS REQUIRED 8-1 FOR ADJUSTMENT
8-2 PLL ADJUSTMENT 8-2
8-3 RECEIVER ADJUSTMENT 8-11
8.4 TRANSMITTER ADJUSTMENT 8-13
SECTION 9. VOLTAGE (CIRCUIT) DIAGRAMS 9-1~14
SECTION 10. PARTS LIST $10-1 \sim 20$
SECTION 11. SCHEMATIC DIAGRAM 11-1
SECTION 12. BOARD LAYOUT SEPARATE

SECTION 1 SPECIFICATIONS

GENERAL

Number of Semiconductors:
Transistors 71
FET 15
IC (Includes CPU) 25
Diodes 212
Frequency Coverage:

$$
\begin{aligned}
& 3.5 \mathrm{MHz} \sim 4.0 \mathrm{MHz} \\
& 7.0 \mathrm{MHz} \sim 7.3 \mathrm{MHz} \\
& 10.0 \mathrm{MHz} \sim 10.5 \mathrm{MHz} \text { (Receive Only) } \\
& 14.0 \mathrm{MHz} \sim 14.35 \mathrm{MHz} \\
& 18.0 \mathrm{MHz} \sim 18.5 \mathrm{MHz} \text { (Receive Only) } \\
& 21.0 \mathrm{MHz} \sim 21.45 \mathrm{MHz} \\
& 24.5 \mathrm{MHz} \sim 25.0 \mathrm{MHz} \text { (Receive Only) } \\
& 28.0 \mathrm{MHz} \sim 29.7 \mathrm{MHz}
\end{aligned}
$$

Frequency Control:
CPU based 10 Hz step Pre-mixed synthesizer.
Independent Transmit-Receive Frequency Available on same band.
Frequency Readout:
6 digit 100 Hz readout.
Frequency Stability:
Less than 500 Hz after switch on 1 min to 60 mins , and less than 100 Hz after 1 hour. Less than 1 KHz in the range of $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Power Supply. Requirements:
DC $13.8 \mathrm{~V} \pm 15 \%$ Negative ground Current drain 20A max. (at 200W input)
$A C$ power supply is available for $A C$ operation.
Antenna Impedance:
50 ohms Unbalanced
Weight:
6.4 Kg

Dimensions:
$94 \mathrm{~mm}(\mathrm{H}) \times 241 \mathrm{~mm}(\mathrm{~W}) \times 275 \mathrm{~mm}(\mathrm{D})$

TRANSMITTER

RF Power:
SSB ($\left.A_{3} \mathrm{~J}\right) \quad 200$ Watts PEP input
CW (A_{1}) 200 Watts input
Continuously Adjustable Output power 10 Watts \sim Max.
AM $\left(A_{3}\right) \quad 40$ Watts output
Continuously Adjustable Output power 10 Watts ~ 40
Watts
Emission Mode:
$\mathrm{A}_{3} \mathrm{~J} \quad \mathrm{SSB}$ (Upper sideband and Lower sideband)
$\mathrm{A}_{1} \quad \mathrm{CW}$
$A_{3} \quad A M$

Harmonic Output:
More than 50 dB below peak power output
Spurious Output:
More than 50 dB below peak power output
Carrier Suppression:
More than 50 dB below peak power output
Unwanted Sideband:
More than 55 dB down at 1000 Hz AF input
Microphone:
Impedance 1300 ohms
Input Level 120 millivolts typical
Dynamic : or Electret Condenser Microphone with Preamplifier

RECEIVER

Receiving System:
Quadruple Conversion Superheterodyne with continuous Pass-Band Shift Control.
Receiving Mode:

$$
A_{1}, A_{3} J(U S B, L S B), A_{3}
$$

IF Frequencies:
1st $\quad 39.7315 \mathrm{MHz}$
2nd 9.0115 MHz
3rd $\quad 455 \mathrm{KHz}$
4th $\quad 9.0115 \mathrm{MHz}$
with continuous Pass-Band Shift Control.
Sensitivity:
SSB, CW Less than 0.3 microvolts for $10 \mathrm{~dB} S+N / N$
AM
Less than 0.6 microvolts for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$
Selectivity:
SSB, CW
AM
2.4 KHz at -6 dB
4.8 KHz at -60 dB
6.0 KHz at -6 dB
18.0 KHz at -60 dB

CW-N
(when optional crystal filter installed)
600 Hz at -6 dB
1.5 KHz at ${ }^{\prime}-60 \mathrm{~dB}$
(when optional AF filter installed)
150 Hz at -6 dB
1100 Hz at -40 dB
Spurious Response Rejection Ratio:
More than 60dB
Audio Output:
More than 2 Watts
Audio Output Impedance: 8 ohms

Specifications are approximate and are subject to change without notice or obligation.

SECTION 2 OPERATING CONTROLS

2-1 FRONT PANEL

2-2 CONTROLS UNDER THE ACCESS COVER

2-3 REAR PANEL CONNECTIONS

FRONT PANEL

1. MODE SWITCH

This switch selects the mode of operation for both transmit and receive.
USB Upper Sideband, mainly for 10, 14, 18, 21, 24 and 28 MHz bands.
LSB Lower Sideband, mainly for 3.5 and 7 MHz bands.
CW Continuous Wave, for CW operation on all bands.
CW-N Narrow CW. The narrow crystal filter is automatically turned ON in this position to improve selectivity when receiving. (When optional crystal filter is installed)
AM Amplitude Modulation.

2. POWER SWITCH

The POWER SWITCH is a push-lock type switch which controls the input DC power to the IC-730. When the external AC power supply (IC-PS15) is used, the switch also acts as the AC power supply switch. When the switch is pushed in and locked, power is supplied to the set. When the switch is pushed again and released, power is cut to all circuits except the PA unit. (When the BC-10A is used, power will also be supplied to the CPU.

3. MIC CONNECTOR

Connect the supplied microphone or optional microphone, IC-SM5 or IC-HM10 to this jack. If you wish to use a different microphone.

4. PHONES JACK

Accepts a standard $1 / 4$ inch headphone plug for headphones of $4 \sim 16$ ohms. Stereo phones can be used without modification.

5. MIC GAIN CONTROL

Adjusts the level of modulation according to the input of the microphone. Clockwise rotation increases the microphones gain. As the input will vary with different microphones and different voices, the knob should be turned until the Meter needle, in the ALC mode, begins to move slightly within the ALC zone. In SSB and AM modes, when the speech processor is in use, the MIC GAIN CONTROL sets the clipping limits, while the RF POWER CONTROL sets the RF drive level to the maximum power level, where ALC starts at the saturation point of the amplifiers.

6. RF POWER CONTROL

Controls the RF output power 10 Watts to maximum (SSB: 100 Watts PEP, CW: 100 Watts, AM: 40 Watts). Clockwise rotation increases the output power.

7. AF GAIN CONTROL

Controls the audio output level in the receive mode. Clockwise rotation increases the level.

8. RF GAIN CONTROL

Controls the gain of the RF section in the receive mode. Clockwise rotation gives the maximum gain. As the control is rotated counterclockwise, the needle of the METER rises, and only signals stronger than the level indicated by the needle will be heard.

9. T/R (TRANSMIT/RECEIVE) SWITCH

This switch is for manually switching from transmit to receive and vice versa. Set the switch to RECEIVE (out) and the IC-730 is in the receive mode. Set the switch to TRANSMIT (in) and it switches to transmit. When switching with the PTT switch on the microphone or with the VOX switch set to ON, the T/R switch must be in the RECEIVE position.

10. VOX SWITCH

This switches the VOX circuit ON and OFF. When it is in the ON (in) position, in SSB, T/R switching is accomplished by means of a voice signal. In CW operation, semi-break-in switching by means of keying is possible.
11. NB (NOISE BLANKER) SWITCH

When pulse type noise such as automobile ignition noise is present, set this switch to the ON (in) position. The noise will be reduced to provide comfortable reception.

The blanking time can be selected NARROW and WIDE, by the NB WIDTH switch under the access cover. It will be effective against any type noises.
12. AGC (AUTOMATIC GAIN CONTROL) SWITCH For changing the time-constant of the AGC circuit. With the switch in the AGC position (out) the AGC voltage is released slowly, and thus is suitable for SSB reception. With the switch in the FAST (in) position, the AGC voltage is released faster, and the AGC is suitable for stations suffering from fast fading or when operating in the CW mode.

13. PREAMP SWITCH

Switches the preamplifier for the receiver.

14. MEMORY/VFO WRITE BUTTON

By pushing this button, A VFO's frequency is written into Memory, or one VFO's frequency is transferred to the other VFO.

15. MEMORY SWITCH

Push this switch when you wish to write a frequency into memory, or to call a memorized frequency.

16. TUNING CONTROL KNOB

Rotating the TUNING CONTROL KNOB clockwise increases the frequency, while rotating it counterclockwise decreases the frequency. The frequency is changed in 10 Hz , 100 Hz or 1 KHz steps which is according to the TUNING RATE switches. One complete rotation of the tuning knob results in a 1 KHz frequency increase or decrease in 10 Hz steps, 10 KHz in 100 Hz steps and 100 KHz in 1 KHz steps.

17. METER

When in the receive mode the meter acts as an S meter regardless of the position of the meter select switch. Signal strength is indicated on a scale of S1-S9, and S9 to $59+60 \mathrm{~dB}$.

In the transmit mode the meter has two functions which are selected by the Meter Switch (18). They are as follows:

Po; indicates the relative output power. SWR can be measured by placing the switch located inside the top cover to the SWR position.

ALC; In this position the meter functions when the RF output reaches a certain level.

18. METER SWITCH

Selects meter function in the transmit mode.

19. TRANSMIT INDICATOR

Illuminates when the transceiver is in the transmit mode.

20. FREQUENCY DISPLAY

The frequency of the IC-730 is displayed on a luminescent display tube. Since the 1 MHz and 1 KHz decimal points are displayed, the frequency can easily be read. The frequencies indicated are the carrier frequencies of each mode in AM, USB, LSB and CW.

Remember, if you turn the RIT SWITCH ON to change the receive frequency and rotate the RIT CONTROL knob, the frequency displayed will not change.

21. NORMAL/SPLIT (TRANSCEIVE/SPLIT) SWITCH

 Selects the relationship of the two VFO's. In the NORM (out) position, one VFO is for both transmit and receive. In the SPT (in) position, one VFO is for transmit and the other is for receive.
22. VFO SWITCH

You can select either of the built-in two VFO's with this switch. It also selects the relationship of the two VFO's with the NORMAL/SPLIT switch. The switch performs the following operations according to its position.
A. (NORMAL) Selects the "A" VFO for both transmit and receive.
A. (SPLIT) Selects "A" VFO for receive and "B" VFO for transmit.
B. (NORMAL) Selects the "B" VFO in both transmit and receive.
B. (SPLIT) Selects "B" VFO for receive and "A" VFO for transmit.

23. TUNING RATE SWITCHES

The small vernier marks on the tuning knob are changed to correspond to $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ or 1 KHz steps which is selected by pushing the switch either $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ or 1 KHz .

24. DIAL LOCK SWITCH

After the $1 C-730$ is set to a certain frequency for rag chewing, mobile operation, etc., push the DIAL LOCK switch the VFO is electronically locked at the displayed frequency, thus inactivating the operation of the tuning knob. To change frequency, the dial lock must first be disengaged by pushing and releasing the DIAL LOCK switch again.

25. RIT SWITCH

Switches the RIT circuit ON and OFF.

26. RIT CONTROL

Shifts the receive frequency $\pm 800 \mathrm{~Hz}$ either side of the transmit frequency. When the RIT is ON, the RIT INDICATOR is illuminated. Rotating the control to the $(+)$ side raises the receive frequency, and rotating to the (-) side lowers the receive frequency. The frequency shifted by turning the RIT Control is not indicated on the frequency display.

27. RIT INDICATOR

Illuminates when RIT is turned ON.

28. BAND SWITCH

The BAND SWITCH is an 11 position rotary switch used for selecting one of the 500 KHz segments. The selectable bands are $3.5 \mathrm{KHz}, 7 \mathrm{MHz}, 10 \mathrm{MHz}, 14 \mathrm{MHz}, 18 \mathrm{MHz}, 21 \mathrm{MHz}$, 24 MHz and 28 MHz . (28 MHz band is separated to four 500 KHz segments.)

29. PASS-BAND SHIFT (TUNING) CONTROL

Allows continuous shifting of the pass-band from upper or lower side in SSB and CW. This will reduce interference by a nearby signal. When the optional crystal filter FL-30 is installed, this control allows continuous tuning of the pass-band selectivity by moving the filter up to 800 Hz from the upper or lower side in SSB and CW. Not only improves selectivity, but also can improve the audio tone. Normal position is in the center position and is 2.4 KHz wide in SSB.

CONTROLS UNDER THE ACCESS COVER

30. SPEECH PROCESSOR SWITCH

Switches the speech processor circuit ON and OFF. This circuit enables greater talk power and better results in DX operation.

31. SWR SWITCH

When measuring SWR, calibration SET and SWR reading functions are selected with this switch. When reading SWR make sure the METER switch on the front panel is in the RF position.

32. SWR SET CONTROL

This control calibrates the meter needle to the SWR SET position when you want to determine the value of SWR. The METER switch must be in the RF position and the set must be transmitting a carrier.

33. VOX GAIN CONTROL

This control adjusts input signal level via the microphone to the VOX circuit. For VOX operation in SSB, adjust the control so that the VOX circuit will operate with normal speech.

34. VOX DELAY (VOX time constant) CONTROL

This controls the transmit to receive switching time. Adjust it so transmit to receive switching will not occur during short pauses in normal speech.

35. ANTI-VOX CONTROL

In VOX (SSB) operation, the VOX circuit may be operated by sound from the speaker causing a switch to transmit. This trouble can be prevented by adjusting the input level of the ANTI-VOX circuit with this control along with the VOX gain control so that the VOX circuit only operates from the operator's voice, not by sound from the speaker.

36. N.B. WIDTH SWITCH

Switches the blanking action time of the noise blanker NARROW (short) and WIDE (long). Set the switch in the NARROW or WIDE position according to incoming noise.

37. CW MONITOR (MONI) CONTROL

This control adjusts the audio volume of the side tone (monitor) audio during CW transmit operation. Adjust it to your desired level for easy listening.

38. FREQUENCY SET CONTROL

This control is for fine adjustment of the reference frequency of the PLL unit, which is local oscillator frequency. Do not turn it unless you want to change the frequency.

REAR PANEL CONNECTIONS

39. MEMORY BACKUP (RL) TERMINAL

For connection of a $9 \sim 12 \mathrm{~V}$ DC power supply. For mobile installation connection to the vehicle's battery can be made the current drain is low, for fixed installation use of the BC-10A is recommended.

By changing an internal connector, this terminal can be used for Transmit/Receive relay control terminal. This terminal can be used to switch 24V 1A DC. Don't exceed this limit.

40. EXTERNAL ALC TERMINAL

This terminal can be used for input terminal of external ALC signal from a linear amplifier or transverter.

By using optional adapter, IC-EX205 and changing internal connectors, this terminal can be used for TRANSVERTER terminal.
VHF and UHF operation using a suitable transverter with the IC-730 is possible. This terminal is for Transverter connection. The output is a few milliwatts.

41. EXTERNAL SPEAKER JACK

When an external speaker is used, connect it to this jack.

Use a speaker with an impedance of 8 ohms. When the external speaker is connected, the built-in speaker does not function.

42. KEY JACK

For CW operation, connect the key here. For electronic keying the terminal voltage must be less than $0.4 \mathrm{~V} D C$.

43. ACCESSORY (ACC) SOCKET

Various functions are available through the accessory socket such as modulation output, receiver output, T / R changeover, and so forth. The table below shows those terminals.

ACC SOCKET CONNECTIONS

PIN No.	FUNCTION
1.	NC (no connection)
2.	13.8 Volts DC in conjunction with the power switch operation.
3.	Connected to Push-to-talk, T/R change-over switch. When grounded, the set operates in the transmit mode.
4.	Output from the receive detector stage. Fixed output regardless of AF output or AF gain.
5.	Output from Transmitter MIC amplifier stage. (Input for MIC gain control stage.)
6.	8 Volts DC available when transmitting. (relay can not be directly actuated. Max. 5 mA).
7.	Input for external ALC voltage.
8.	Ground
9.	NC
10.	8 Volts DC available when the 28 MHz band is selected.
11.	Input for TRANSVERTER control. When 8 Volts DC is applied, set can operate with a transverter.
12.	Output reference voltage for band switching.
13.	Output for external band switching.
14.~24.	NC

44. ANTENNA (ANT) CONNECTOR

This is used to connect an antenna to the set. Its impedance is 50 ohms and connect with a PL-259 connector.

45. GROUND TERMINAL

To prevent electrical shock, TVI, BCI and other problems, be sure to ground the equipment through the GROUND TERMINAL. For best results use as heavy a gauge wire or strap as possible and make the connection as short as possible, even in mobile installations.

46. POWER SOCKET

For connection of the IC-PS15's DC power cord, or other suitable power supply.

3-1 RECEIVING CIRCUITS

3-1.1 RF CIRCUITS

The receiving signal from the antenna is fed from P3 of the LPF unit to $\mathrm{J} 2-1$, where frequencies less than 3.5 MHz are attenuated about 40 dB by a High-Pass filter. This filter reduces intermodulation by strong $B C$ signals.

The signal is usually fed to D3 directly through the contacts of RL1.

The set employs the DFM (Direct Feed Mixer) system at the front end, to get wide dynamic range.

When the PREAMP switch on the front panel is in the ON position, the signal is fed to the preamplifier. The preamplifier, consisting of Q 1 and Q 2 , is designed to provide the gain of about 10 dB and the intercept point of 26 dBm on the entire band.

To the preamplifier, power source (13.8V) is always applied regardless if the preamplifier is turned on or off. When the PREAMP switch is pushed in, the emitter of O 3 is grounded through the switch and RL1 is actuated in the receive mode, as R8V is applied to the base of Q 3 through R4. In the transmit mode or when $\mathbf{Q 8}$ is turned on as the TRV signal is applied to its base, the bias voltage is not applied to Q3 and RL1 is not actuated even if the PREAMP switch is pushed in.

Q5 is turned on in the transmit mode and shunts the receiver input line to ground to prevent RF feedback.

The signal passed D3 is fed to a band-pass filter which is selected by the band switching signal sent from the BAND switch through the PRE-MIX unit.

The band-pass filters are provided for each band, and one is selected for the band of operation by turning ON the diodes located at the input and output circuits of the filter. These filters have about 2 dB insertion loss respectively.

The signal passed the band-pass filter is fed to the 1 st mixer consisting of D4 - D7 (Doubly Balanced Mixer). This DBM has a +18 dBm intercept point and 6 dB insertion loss.

The 1st Local Oscillator functions at the operating frequency plus 1 st IF (39.7315 MHz) frequency. It is fed from the BPF unit through $\mathbf{J 6}$.

This 1 st LO is changed with 1 kHz steps and its frequency range for each band is as follows;

BAND	1st LO FREQUENCY
3.5 MHz	$43.1319 \mathrm{MHz} \sim 43.8315 \mathrm{MHz}$
7.0 MHz	$46.6315 \mathrm{MHz} \sim 47.3315 \mathrm{MHz}$
10.0 MHz	$49.6315 \mathrm{MHz} \sim 50.3315 \mathrm{MHz}$
14.0 MHz	$53.6315 \mathrm{MHz} \sim 54.3315 \mathrm{MHz}$
18.0 MHz	$57.6315 \mathrm{MHz} \sim 58.3315 \mathrm{MHz}$

21.0 MHz
24.5 MHz
28.0 MHz
28.5 MHz
29.0 MHz
29.5 MHz

$$
\begin{aligned}
& 60.6315 \mathrm{MHz} \sim 61.3315 \mathrm{MHz} \\
& 64.1315 \mathrm{MHz} \sim 64.8315 \mathrm{MHz} \\
& 67.6315 \mathrm{MHz} \sim 68.3315 \mathrm{MHz} \\
& 68.1315 \mathrm{MHz} \sim 68.8315 \mathrm{MHz} \\
& 68.6315 \mathrm{MHz} \sim 69.3315 \mathrm{MHz} \\
& 69.1315 \mathrm{MHz} \sim 69.8315 \mathrm{MHz}
\end{aligned}
$$

The center frequency of the 1st IF is varied 39.7305 MHz 39.7315 MHz due to the 10 Hz step tuning.

The 1st IF signal converted at the 1 st mixer is fed to the monolithic crystal filter F12 through D20 transmit/receive switching diode, then fed to the 1st IF amplifier Q6. FI2 has a pass band of 15 kHz at -3 dB points.

The 1st IF amplifier $\mathbf{Q 6}$ is a MOS FET, and an AGC voltage is applied to its 2nd gate. The attack time constant is determined by R36 and C67. C81 prevents VHF parasitic oscillation.

The amplified 1st IF signal is fed to F11 through D21 transmit/receive switching diode. FI1 is the same as FI2, and totally the 2 nd image rejection ratio is more than 80 dB .

The 1st IF signal passed FI1 is then fed to the 2nd IF unit.

3-1-2 SECOND IF CIRCUITS

The 2nd IF signal fed from the RF unit is input to J 2 and fed to the Noise Amplifier and Noise Blanker gate circuits.

The signal (39.7315 MHz) is amplified with Q1 and Q2, dual gate MOS FETs, and IC1, high gain amplifier with AGC. The amplified signal is detected by D14 and then fed to IC2, voltage comparator and noise pulses are detected.

D16 genarates the reference voltage, 1.2V, for IC2. D15 shunts over-voltage to prevent long delay-times.

A part of the detected signal from D14 is used for the AGC of IC2. The detected signal is fed to the base of $\mathbf{Q 7}$ through R42. When the detected voltage exceeds $0.6 \mathrm{~V}, \mathrm{Q7}$ is turned ON which turns OB ON as well. 2.5 V is usually applied to pin 3 of IC2. This voltage is increased when Q 8 turns ON , with time constant of R34 and C42 (attack-time), This provides the AGC function. This time constant (attacktime) can be changed by the NB WIDTH switch (S4 on the MAIN unit). When it is set at the WIDE position, the time constant is determined by R46 and C42. The release-time of the AGC is determined by R34, R38, R47 and C42.

Average voltage at pin 2 of IC2 will be 0.6 V due to the AGC function. Only when the detected voltage exceeds 1.2 V caused by a noise pulse, pin 3 output terminal of IC2 puts out 1V pulse, and it turns ON the NB gate switch Q3.

The NB gate circuit is composed of D20, D21 and D24, and usually D20 and D21 are turned ON and D24 is OFF by the reverse voltage (6.6 V) applied to the cathode. When 03 is turned $O N$ by a noise pulse, Dfor free by ON^{N} and
shunts the RF signals to ground. This grounds the anodes of D20 and D21, and turns them OFF. Thus the noise pulse is not fed to the following circuits.

The signal which passes the NB gate circuit is then fed to the $2 n d$ mixer consisting of D1 - D4 diode DBM.

The 2nd local oscillator consisting of Q 9 and X 1 oscillates at $30.71901 \mathrm{MHz}-30.720 \mathrm{MHz}$ with 10 Hz steps. D19 varactor diode provides this frequency variation. A control voltage generated in the LOGIC unit and DC-amplified in the MAIN unit is applied to D19. The oscillation frequency can be adjusted by L1 and the voltage applied to D19. The 2nd local oscillator signal is about +2 dBm and is fed to the L6 center tap in the 2nd mixer circuit to convert the 1st IF signal to 2 nd IF $(9.0115 \mathrm{MHz}$) signal.

The 2nd IF signal is fed to FI1 monolithic crystal filter installed as standard. When optional SSB crystal filter, FL-30, and/or CW crystal filter, FL-45 is installed, the suitable crystal filter is selected by the MODE switch.

Fl1 has 3kohm input/output impedance, so L8 and L9 work as step-up and step-down matching transformers respectively. FI1 has lower insertion loss than other optional filters, so R15 and R28 are inserted as an attenuator. L9 is tuned by D12 varactor diode, which gives more isolation when other filters are selected. The filtered 2nd IF signal is then fed to the MAIN unit through P1.

Filter selection is made by voltages CWN (applied in CW-N mode) and CSW (applied in other modes) from the MODE switch through J4.

The voltage CSW is fed to the filter selection pins consisting of P3, J7 and J8, through pin 1 of J4 and D17. P3 is connected to $J 7$ when the set has been shipped. When the optional SSB crystal filter (this provides PBT function) is installed, P3 should be connected to J8.

The voltage CWN is fed to the filter selection pins consisting of P2, J5 and J6, through pin 2 of J4 and D18. P2 is connected to J 5 when the set has been shipped. When the optional CW crystal filter is installed, P2 should be connected to J6.

When any optional filters are not installed (the filter selection pins are original connections), the bases of 04 and Q5 are not applied with any bias voltages, so 04 and Q 5 are turned OFF and both emitters are OV. Thus D9 and D13 are turned OFF and Q6 is turned ON, and D10 and D11 are turned ON and F11 is selected in any modes.

When the optional SSB crystal filter is installed and P3 is connected to J8, Q5 is turned ON and R8V is applied to D7 and D8, and D7 and D8 are turned ON. Thus the SSB
crystal filter is selected. At the same time, R8V is applied to the base of Q6 through D13 and turns OFF Q6, thus F11 is isolated from the circuit.

When the optional CW crystal filter is installed and P2 is connected to J6, Q4 is turned ON and R8V is applied to D5 and D23, and D5 and D23 are turned ON. Thus the CW crystal filter is selected. At the same time, R8V is applied to the base of O6 through D9 and turns OFF O6, thus F11 is isolated from the circuit the same as when SSB crystal filter is installed.

D6 is turned ON when the optional CW filter is selected, and it shunts to ground the optional SSB filter input terminal to prevent signal leakage in the pass band of the SSB filter.

These optional filters are selected only when the set is in the receive mode.

3-1-3 MAIN UNIT

The receive signal from the 2nd $\| F$ unfor free by $J 16$ on
the MAIN unit. In the receive mode, D1 is turned ON and D10 is turned OFF by the R8V, and the signal is fed to the 1st gate of IF amplifier Q1, dual gate MOS FET. To the 2nd gate, AGC voltage is applied. Its attack time is determined by R4 and C4.

The amplified 2 nd IF signal is fed to the 1 st gate of the 3 rd mixer Q3, dual gate MOS FET through D2, which is turned ON in the receive mode. To the 2 nd gate, 9.4665 MHz local oscillator signal for IF TUNE or PBT is applied, and the 2nd IF signal is converted into 455 kHz 3 rd IF signal.
In SSB or CW mode, the 3rd IF signal is passed through FII mechanical filter through D4 and D6, which are turned ON. MF-455-11AZ or MF-455-11GZ is employed for FII. 11 AZ has 1.5 kohm and 240 pF input/output impedance and 11 GZ has 1.5 kohm and 20 pF . Thus, C 75 through C78 are not used for the 11GZ.

In AM mode, the 3rd IF signal is passed through FI2 ceramic filter through D5 and D7.

The output from the 455 kHz filters is fed to a balanced mixer consisting of 04 and O 5 , and converted into a 9.0115 MHz 4 th IF signal again. The local oscillator signal is the same one for the 3rd mixer, and fed to the center tap of the input tuned circuit. The 4th IF signal is fed to IF amplifier Q 6 through a switching diode D8, then amplifier Q7. Both amplifiers employ dual gate MOS FET respectively. To the 1st gate, the IF signal is fed and to the 2nd gate, AGC voltage is applied respectively. The amplified signal is fed to the DET UNIT through J6, Pin 5.

The source voltage of 08 is varied according to AGC voltage i.e., incoming signal level. This voltage is amplified by 07 , then fed to the S-meter. R42 is for meter zero-point adjustment and R41 is for full-scale adjustment.

3-1-4 IF TUNE AND PBT CIRCUITS

The VXO circuit consisting of 011 and $\times 1$ oscillates at 9.4665 MHz , and this frequency can be changed by $\pm 1.5 \mathrm{kHz}$ by changing the voltage applied to D13 varactor diode. This voltage is varied by R13, PASS BAND SHIFT CONTROL on the front panel, and applied to D13 through D12 in the receive mode. In the transmit mode, a voltage adjusted by R66 is applied to D13 through D11, and the oscillation frequency is fixed at the center frequency, 9.4665 MHz . This signal is fed to the 2 nd gate of $03,3 \mathrm{rd}$ mixer, and 4th mixer $Q 4$ and $Q 5$ through a buffer amplifier Q12.

When the Pass-Band Shift Control is set at the center position, the $V \times O$ oscillates at 9.4665 MHz , and 9.0115 MHz , the center frequency of the 2nd IF signal is converted into 455 kHz , the center frequency of 3rd IF signal. This 455 kHz signal is converted into 9.0115 MHz signal again with the 9.4665 MHz VXO signal. This is the normal condition of the Pass-Band Shift system and incoming signals pass through both pass-bands of the filters, 9.0115 MHz and 455 kHz .

When the PB Shift Control is slid toward the right side, the VXO frequency is increased, as an example; 9.4675 MHz
($9.4665 \mathrm{MHz}+1 \mathrm{kHz}$), 9.0115 MHz , the center frequency of the 2nd IF signal is converted into 456 kHz , 3rd IF signal. This 456 kHz signal is converted into 9.0115 MHz signal again with the 9.4675 MHz VXO signal. However, the 456 kHz , 3rd IF signal is off from the center frequency of the 455 kHz filter. In other words, the pass-band of the 455 kHz filter is shifted toward the lower side, and the total pass-band is also shifted toward the lower side. At this time, if the optional SSB filter FL-30 is installed, the total band width is narrowed from the upper side. Thus the center position of the control is the widest bandwidth and is equivalent to the normal SSB bandwidth, and the bandwidth is narrowed electrically from either the upper or lower side continuously by up to 800 Hz .

3-1-5 DETECTOR CIRCUITS

In the SSB and CW modes, a 9.0115 MHz , 4th IF signal is fed to IC2, product detector in the DET unit. To the other port of IC2, a BFO signal is applied and an AF signal is put out from pin 3. The BFO is composed of $\mathrm{Q8}, \mathrm{X} 1$, C39, C40, L2 through L4, etc. C39, C40 and L2 through L4 are connected in series with X1, and L2 through L4 are shunted to ground respectively according to the selected mode to get proper BFO frequency.

The detected AF signal is fed to pin 5 of IC1 operational amplifier. The amplified AF signal is put out from pin 7 and fed to 07 , low-pass filter, then to the VOLUME control on the front panel.

In the AM mode, the 4th IF signal is fed to Q1, IF amplifier. A part of the amplified signal is then fed to AM detector D5.

The detected AF signal is fed to pin 3 of IC1, operational amplifier. The amplified AF signal is put out from pin 1 and then fed to low-pass filter Q7.

As an AGC voltage, a part of the 4 th if signal at 01 collector is fed to AGC detector D1. The detected DC signal is then fed to the base of $\mathbf{Q 2}$. When the applied voltage is over the threshold voltage, Q 2 is turned ON and a negative voltage connected to the emitter, charges C6 through R9. When the applied voltage becomes less than threshold voltage, or zero, $\mathbf{Q 2}$ is turned OFF and the voltage of C6 is discharged through R8 (high value resistor). This provides fast attack/slow release AGC. AGC voltage is taken from the collector of $\mathbf{Q 2}$ and supplied to each 2 nd gate of the IF amplifiers. On the AGC line, the RF gain control voltage from the RF GAIN control is superimposed.
When the AGC switch on the front panel is pushed in, Q10 is turned ON, and R13 and C10 (in series) are connected in parallel with R8 and the AGC time constant becomes shorter.

3.1-6 AF POWER AMPLIFIER CIRCUIT

AF signal from the VOLUME control, R8-2, on the front panel is fed to pin 1 of IC1 AF power amplifier on the MAIN unit. The signal is amplified with IC1 to get 2 watts output power in an 8 ohm load. The output signal is fed to the internal speaker through the PHONES jack and EXTERNAL SPEAKER jack. This IC is free by in the transmit mode to produce the CW sidetor free by

3-2 TRANSMITTING CIRCUITS

3.2-1 AF CIRCUITS

The audio signal from the microphone is fed to pin 3 of IC4, operational amplifier on the MAIN unit, through the MIC GAIN control R14-2 on the front panel. The amplified AF signal is put out from pin 1 , then fed to pin 5 of the balanced modulator, IC2 in the DET unit, which is the same one for the receiver product detector. To pin 7, the BFO signal is fed and mixed with the audio signal, and a 9.013 MHz or 9.010 MHz modulated DSB (carrier suppressed double side band) signal is put out from pin 3.

In the receive mode and SSB transmit mode, bias voltages adjusted by R44 and R45 are applied to pins 5 and 7 respectively to place IC2 in a carrier null condition. In the AM and CW transmit modes, Q6 is turned OFF and an offset voltage is applied to pin 5 through D4. Thus IC2 is in an unbalanced condition and a 9.0115 MHz AM signal or carrier is put out from pin 3. In the other modes, O 6 is turned ON and the offset voltage is shunted to the ground and IC2 is in a balanced condition.

In the receive mode and CW transmit mode, O 5 is turned $O N$ and shunts the AF signal from the microphone to ground to prevent the AF signal is applied to IC2.

3-2-2 IF CIRCUITS

The signal output from IC2 in the DET unit is fed to the 1 st gate of Q3, mixer, the same one for receive 3rd mixer, through D3 in the MAIN unit to be converted into a 455 kHz signal. The local oscillator for this mixer is also the same one for the receive. However, the oscillation frequency is fixed at 9.4665 MHz .

In the receive mode, Q 2 is turned ON and shunts the signal fed from the DET unit to ground to prevent the signal from leaking into the receiver IF circuits.

In the SSB and CW modes, the 455 kHz signal is fed to Fl , MF-455-11GZ (or -11AZ), mechanical filter which has a 2.4 kHz bandwidth, to remove unwanted sideband signal.

In the $A M$ mode, the 455 kHz AM signal is fed to FI 2 , CWF455HT, ceramic filter which has a 6 kHz bandwidth, and the signal passes through the filter unchanged.

The output from the selected filter is then fed to the balanced mixer consisting of Q4 and Q5 which is the same one used in the receiver's 4 th mixer. The mixer's porpuse is to convert the incoming signal to 9.0115 MHz . The 9.0115 MHz signal is then fed to the IF amplifier Q 9 .

In the CW mode and key-up condition, a positive voltage is applied to the source of Q9 through D19, and Q9 is turned off and the signal is not fed to the next stages. In keydown condition, Q10 is turned ON and the positive voltage applied to the source is shunted to ground through Q10. Thus the positive voltage is not applied, Q 9 functions in normal condition and the signal is amplified then fed to the next stages.

MHz crystal filter (or installed optional crystal fiter) in the 2ND IF unit.

Then the signal is fed to the doubly balanced mixer consisting of D1 through D4, which is the same one used in the receiver's 2 nd mixer. In this case, the mixer's purpose is to convert the incoming signal to 39.7315 MHz .

The 39.7315 MHz signal is fed to the amplifier $\mathrm{Q7}$, then the mixer consisting of D4 through D7, which is the same one for receiver 1st mixer, for conversion to the desired operating frequency.

When $10 \mathrm{MHz}, 18 \mathrm{MHz}$ or 24.5 MHz band is selected, a positive voltage is applied to the source of Q7 through D27, D26 or D25 respectively. This turns Q7 OFF and mutes transmission on these bands. To transmit on these bands, cut lead of the diode for the desired band.

The desired operating frequency signal is fed to the bandpass filter to produce a clean output. The appropriate filter is selected with the BAND switch. The signal is then amplified by O 4 and fed to the PA unit.

3-2-3 RF POWER AMPLIFIER CIRCUITS

The transmit signal fed to the PA unit is amplified by Q1 up to about 1 watt. Q1 is a class A amplifier and maintains high linearity.

L2 gives the correct phase signals (180 degrees apart) for the push-pull amplifier Q2 and Q3. Q2 and Q3 are class $A B$ amplifiers and amplify the signals up to about 6 watts. The bases of Q2 and Q3 are biased by means of the barrier voltage set by D1. D1 functions as temperature compensator for Q2 and Q3, and is attached to the case of Q2. Negative feedback by R and C applied across each collector and base of O 2 and Q 3 , provides stablility and broadband characteristics.

L4, a broadband transformer provides balanced DC feed to the collectors of Q2 and Q3, and for matching the collector-to-collector impedance.

Then the signal is fed to each base of Q4 and Q5 through L4 secondary for impedance matching and correct phasing.
Q4 and Q 5 are class $A B$ push-pull amplifiers which produce 100 watts output.

The bases of Q 4 and Q 5 are biased for class $A B$ operation by the emitter voltage of Q6 which is controlled by the barrier voltage of D2. D2 voltage is adjusted by R21 to give proper idling current.

D2 also functions as a temperature compensator to prevent runaway caused by heating, and is attached to the case of Q4.

R17 and R18 are resistors which provide negative feedback from L7. L7 samples the output and provides stablility and broadband characteristics.

The signal amplified by 04 and $\mathbf{0 5}$ is fed to the FIL (lowpass filter) unit through L8 impedance matching transformer.

A thermal switch is mounted on the case of $\mathbf{Q 4}$ and turns ON when the case temperature exceeds 70 degrees C . This changes the speed of the cooling fan from low to high. This cooling fan rotates at low speed during transmit in the normal condition. At this time, 8 volts is supplied to the fan motor through R22, R23 and 07. When the thermal switch is turned ON, 13.8 volts is supplied to the fan motor through R22 only, and the cooling fan rotates at high speed not only in the transmit mode but also in the receive mode.

The transmit signal which has passed the low-pass filter is fed to the ANT (antenna) connector on the rear panel through the SWR detector coil L15 in the FIL unit.

3-2-4 ALC CIRCUITS

The foward power voltage, SWF and reflected power voltage, SWB, detected at the FIL unit, are fed to the MAIN unit through J20. The foward power voltage, SWF, is fed to the negative input terminal of IC2B and amplified as an ALC voltage. This ALC voltage is fed to the 2 nd gates of $\mathbf{Q 9}$ in the MAIN unit and $\mathbf{Q 7}$ in the RF unit.

In the SSB or CW mode, the attack time of the ALC voltage is determined by R70, C43 and R169 and the release time is determined by C43 and R88, and a peak voltage is put out.

In the AM mode, Q13 and Q14 are turned ON, and the attack time is determined by R70 and C42, and the release time by R68 and C42, and an average voltage is put out.

To the positive terminal of IC2B, a voltage from the RF POWER control on the front panel is applied to control the ALC voltage and the output power can be adjusted between 10 watts and 100 watts by adjusting the RF POWER control.

The ALC voltage is also fed to the negative terminal of IC3B through R88 and amplified to indicate ALC level on the meter. The swing of the meter is adjusted by R91.

The voltage applied to the negative terminal of IC2B is controlled by the RF POWER control on the front panel.

When the control is turned fully counterclockwise, the voltage is minimum and the output power is also miminum (10 watts). This voltage (output power) can be adjusted by R149.

When the control is turned fully clockwise, the voltage is the maximum and the output power is also the maximum (SSB and CW: 100 watts, AM:40 watts). This voltage is divided from 8 volts by R147 and R150, and can be adjusted by R150.

In the AM mode, Q19 is turned ON and R151 is connected with R150 in parallel, and the maximum power is reduced to 40 watts.

S3 is a switch to reduce the maximum power to 050 watts. When S3 is switched ON, a voltage is applied to the base of Q19 through D28 and R153 and Q19 is turned ON the same as in the AM mode. In addition, a voltage is applied to the RF POWER control through R168 and D29, and the maximum power is adjusted to 50 watts by R168. In the AM mode, Q20 is turned ON and R168 is shunted to ground and the maximum power is 40 watts as usual.

3-2.5 VOX CIRCUITS

Audio signal from the microphone is fed to pin 5 (positive input terminal) of IC6, comparator, through J3 and R137, VOX GAIN control. To pin 5, a bias voltage which is divided by R132 and R135, and R136 is applied through R137. Ta pin 6 (negative input terminal), a reference voltage which is divided by R132, and R135 and R136 is applied. The difference voltage between the two terminals is only the voltage across R135. Thus the sensitivity of the comparator is very high and the VOX circuit actuates with a small input level. When a voice signal presents, the output terminal (pin 7) of IC6B becomes at High level and this voltage charges C63. The charged voltage is discharged through R128 and R129 and it decides the VOX holding time. The VOX holding time can be adjusted by R129. This High level voltage is applied to pin 5 (positive input terminal) of IC5B, VOX control.

In the CW mode, IC5A is used as a break-in control.
In the key-up condition, the same bias voltage is applied to both pin 2 (negative input terminal) and pin 3 (positive input terminal), and pin 1 (output terminal) is low level. In the key-down condition, pin 2 is grounded through R117 and pin 1 becomes at high level. This voltage charges C62 and is applied to pin 5 of IC5B. The holding time is decided by C62, and R128 and R129.

To pin 6 of IC5B, a bias voltage divided by R125 and R139 is applied as a reference voltage. When the voltage at pin 5 becomes higher than that one at pin 6, pin 7 loutput terminal) puts out high level voltage. This turns on Q17 and 018 , and grounds the SEND line, when the VOX switch is turned on, to set the radio in the transmit mode.

3-2-6 ANTI VOX CIRCUITS

A part of the receiver audio signal put out from IC1 is fed to pin 3 (positive input terminal) of IC6A, comparator, through the ANTI VOX level control, R142. When a receiver audio is present, pin 1 of IC6A puts out high level voltage. This voltage is applied to pin 6 of IC5B, and increases the reference voltage and cuts off IC5B. Thus the VOX circuit does not function with an audio from the speaker.

3.3 1ST LOCAL OSCILLATOR CIRCUITS

The ist local oscillator employs a premix system consisting of a PLL and a crystal oscillator for each band.

1. PLL (PHASE LOCKED LOOP) CIRCUITS

The PLL employs a mixed down type, and is locked in 10 kHz steps. This output is divided into $1 / 10$, as a result, 1 kHz steps is obtained.

The local oscillator, 01 oscillates at 13.666 MHz with the crystal unit X 2 . This signal is tripled at $\mathbf{Q 2}$ and 03 , thus the local oscillator output, 123 MHz is obtained. A varactor diode, D1 is connected in series with X2, and voltages from the RIT control and FREQUENCY SET control are applied to the cathode and anode respectively. This varies the local oscillator frequency slightly to provide the RIT function and frequency calibration.

Q6 is the VCO (Voltage Controlled Oscillator), and oscillates at a frequency between 132 MHz and 139 MHz . The
output signal is fed to the base of Q4, PLL mixer, through buffer amplifiers Q7 and Q8. To the emitter of O4, the local oscillator signal is fed and mixed with the VCO signal to mix down the VCO frequency.

The output signal from the mixer is fed to the low-pass filter consisting of C23, L6 and C24, to filter out only the signal below 15 MHz . Then the signal is amplified to the proper level (more than $3 V$ P.P) of the programmable divider, IC1, by 05.

IC1, PLL IC, consists of the programmable divider, reference frequency oscillator, fixed divider, phase detector, etc. The reference frequency oscillator oscillates at 9.000 MHz , and its signal is divided into 10 kHz and fed to the phase detector as the reference frequency.

The signal from Q 5 is divided into $1 / \mathrm{N}$ at the programmable divider. The N data is sent from the CPU in the LOGIC unit in sequence as shown in the illustration.

The divided signal is fed to the phase detector internally. The phase detector detects the phase difference between the 10 kHz reference signal and the output signal from the programmable divider, and proportionately puts out positive/nagative pulse signal at pin 14.

This pulse signal is fed to the loop filter consisting of R28 through R30 and C34 through C36, then fed to the varactor diode, D2, to lock the VCO frequency.

The locked VCO signal is fed to the buffer amplifier, Q7, and a part of this signal is fed to the $1 / 10$ divider, IC2. Then the divided signal, between 13.2 MHz and 13.9 MHz with 1 kHz steps, is fed to the mixer in the PREMIX unit through low-pass filter consisting of C53 through C57, L10 and L11, and attenuator consisting of R41 through R43.

2. PREMIX CIRCUITS

The premix circuits are composed of offset frequency oscillator for each band, mixer and band-pass filter for each band.

Q1 through Q11 are offset frequency oscillators. One of them is selected by the band signal from the band switch
and oscillates at the frequency shown in the table for each band.

BAND	OFFSET FREQUENCY
3.5	29.9315 MHz
7.0	33.4315 MHz
10.0	36.4315 MHz
14.0	40.4315 MHz
18.0	44.4315 MHz
21.0	47.4315 MHz
24.0	50.9315 MHz
28.0	54.4315 MHz
28.5	54.9315 MHz
29.0	55.4315 MHz
29.5	55.9315 MHz

The offset frequency signal is fed to the doubly balanced mixer consisting of D1 through D4, and L12 and L13. To the other port of the mixer, the PLL output signal is applied to convert into the 1st local oscillator signal for free by
for

D12 through D33 are matrix diodes to convert the band signal into hexadecimal code for the CPU.

The output signal from the mixer is then fed to the BPF unit. The BPF unit is composed of a high-pass filter, lowpass filter and band-pass filter for each band, and buffer amplifiers.

The high-pass filter is composed of C1 through C5, and $L 1$ and L2.

The low-pass filter is composed of C6 through C13 and L3 through L5.

The band-pass filters are provided for each band and selected one of them by the band signal from the band switch.

The signal passed through the high-pass filter, low-pass filter and a band-pass filter is then fed to the buffer amplifiers, Q1, Q2 and Q3. The output of Q3 is then fed to the mixer consisting of D4 through D7 in the RF unit as the 1st local oscillator signal.

3. LOGIC CIRCUITS

The logic circuits control operating frequency, band, mode, PLL, display etc., and are designed for low power consumption and high speed operation using a CMOS 4-bit CPU.

The CPU, IC1 is a plastic package with 42 pins. CLO and CL1 of pins 1 and 42 are the clock terminals for this CPU, oscillating at about 400 kHz with X 1 ceramic oscillation unit.

The CPU has a total of 9 input and output ports, each sharing its own function:

Port A-4 bit input
Decodes the port E output as shown in the matrix table to expand input functions with time sharing.

Port B-4 bit input
Used as an input port for the sensor (tuning control).

Port C-4 bit output

Outputs the 2nd local oscillator 100 Hz steps D/A converting signal.

Port D-4 bit output

Outputs the 2nd local oscillator 10 Hz steps D/A converting signal.

Port E-4 bit output

Outputs various data as a general purpose output terminals.

Port F-3 bit output

FO : Strobe signal output for display.
F1 : Load signal output for PLL above 1 kHz digit.
F2 : Reset signal output for display.
Ports G and H are not used.

Port I-1 bit output

10 : Reset signal output for sensor counter.
When the power switch is turned on, 13. 8V DC is applied to IC9, voltage regulator, through R2 and D1. IC9 puts out regulated 5 V . At the same time, $\mathbf{Q 2}$ is turned on and supplies the regulated 5 V as the power source of the LOGIC unit. When a memory backup power source is connected, the power is applied to IC9 through R1, and regulated 5 V is supplied to IC1, the CPU to maintain the operating frequency, memorized frequency, etc. At this time, $\mathbf{Q 2}$ is turned off and 5 V is not supplied for the other circuits.

At the moment of the power switch has been turned on, a pulse is feof to pin 3 of IC8 through C3. After the pulse has been waveform-shaped, it is fed to the reset terminal (pin 7) of IC1, to initialize the CPU.

The matrix circuit is designed as follow:

BA1 through BA8 are band data which is fed from the PREMIX unit.

This data is processed by the CPU and the CPU puts out signals to control the display and PLL.

In the SSB operation, the selected sideband (LSB or USB) is reversed automatically when changing the operating band from 10 MHz to the lower band or from 7 MHz to the upper band. For this function, the band data and mode data (LSB or. USB) from the mode switch are fed to exclusive OR gates, IC7, and their outputs are fed to A0 and A1 input terminals of the CPU.

The two signals from the rotary encoder connected to the tuning control are input to SENS1 and SENS2 terminals of the LOGIC unit, and waveform-shaped by the respective Schmitt triggers, consisting of IC2 and R11 through R14 One of the waveform-shaped signal for free by
inverter, then Pin6 of IC3 as a switching signal. The other waveform-shaped signal is output from pin3 of IC2 and differentiated by C12 and R10, then fed to pin1 of IC3, inverter. The output signal from pin3 of IC3 is also differentiated by C11 and R9, then fed to pins 5 and 12 of IC3. To the other gates of IC3, the switching signal is applied and controlled the differentiated signals. The output signals from pins 4 and 11 of IC3 are fed to 2 input NOR gate of IC3 and combined as the UP signal. This UP signal is fed to CP terminal of IC5, flip-flop, and it holds the output terminal, pin 13, H -level when the UP signal is present. This H -level signal is then fed to B3 terminal of the CPU, and the CPU processes to increase the operating frequency. When the tuning control is turned counterclockwise, the B3 terminal is maintained in the L-level.

Two differentiated signals at C12 and C11 are fed to pins 5 and 6 of IC2, OR gate, and combined signal is output from pin4. The rotary encoder outputs 50 pulses per revolution, while pin4 of IC2 outputs both leading edge and trailing edge, resulting in an output of 100 pulses per revolution. This output signal is fed to a counter of 3-bit, consisting of IC4 and a half of IC5.

This counter is capable of counting a maximum of 7 pulses, and serves as a timing buffer between the encoder and the display in relation to reading by the CPU. If there is any output at the counter, the output of the diode OR gate, consisting of D5 through D7, becomes H -level, input to inverter, IC8, then input to the INT terminal of the CPU with its level inverted to L-level. This terminal is a priority terminal which gives priority to sensor processing by stopping other operations. In the priority routine, counter data and up-down data fed to BO through B3 terminals are read by the CPU, performing in this way all operations related to sensor processing.

Immediately after the sensor data have been read, a reset pulse is put out from IU terminal, and the pulse is differentiated by C5 and R46, then fed to clear terminals of the counter and up-down latch to clear them.

The up-down control circuit consisting of Q3, Q4, R16 through R21, C17 through C21, etc., provides frequency control from the up-down switches on the microphone. When the UP or DOWN button is depressed, the multivibrator, Q3, oscillates and pulses are fed to pin6 of IC4, and the 3 -bit counter counts the pulses the same as the pulses from the rotary encoder.

After processing, the CPU outputs frequency data for the PLL from the port E. This data is a 4-bit parallel data and it is output in sequence according to its digits. The port E also output frequency data for the display with time sharing. This data is 4 -bit parallel and 8 -digit data. FO and F2 terminals output clock pulses for the display and F1 terminal outputs clock pulse for the PLL. Data for 1 kHz and lower digits are output from the ports C and D, and fed to D/A converter consisting of R35 through R43 to convert into a analog signal. This analog signal is fed to the 2 nd
local oscillator in the 2 nd IF unit to get 10 Hz step frequency resolution.

3-4 DISPLAY UNIT

This unit is composed of DS1 display tube, IC1 driver IC and DC-DC converter for the display tube and negative voltage source.

The frequency data is fed to pins 2 through 5 , input port S, and timing control pulse is fed to pin 15. After processing, segment data is put out from pins 16 through 22 with digit control signal put out from pins 6 through 11. These signals are fed to the display tube and light the tube with dynamic lighting.

The DC-DC converter is composed of Q1, L1, R1 through R3, C1 through C4, D1 through D4, etc. This converter generates a negative voltage and filament voltage for the display tube, and -5 V for the AGC circuit and operational amplifiers.

TOP VIEW

RF UNIT

DISPLAY UNIT

LPF UNIT and ACC BOARD

2nd IF UNIT

for free by

SECTION

6-1 DESCRIPTION

6-1-1 IC-EX195 (MARKER UNIT)

This unit generates marker signals to calibrate IC-730's operation frequency. The marker generator puts out accurate 100 KHz or 25 KHz signals on the entire band, and gives easy and accurate frequency calibration.

6-1-2 IC-EX203 (CW AUDIO FILTER UNIT)

This unit is an audio filter which gives $150 \mathrm{~Hz} / 6 \mathrm{~dB}$ passband in the CW operation. This is very effective in reducing interference from near-by signals and increasing SN ratio.

6-1-3 IC-EX202 (LDA UNIT)

This unit puts out the band control voltage to change operating band automatically for external equipment such as a linear amplifier and an antenna tuner.

6-1-4 IC-EX205 (TRV UNIT)

This unit provides terminals to put out a low level RF
signals, and for receiver input and T / R control on the rear panel of IC-730 for a VHF/UHF transverter.

6-1-5 FL-44(A) (455KHz SSB CRYSTAL FILTER)

This filter is for replacement of the 455 KHz mechanical filter installed in the 2nd IF circuit, and has a higher shape factor and provides more selectivity.

6-1-6 FL-30 (SSB PASS BAND TUNING CRYSTAL FILTER)

This filter provides the Pass Band Tuning system which narrows the IF Pass Band continuously up to 1 KHz either from upper side or lower side. This is very effective in reducing interference from nearby signals.

6-1-7 FL-45 (CW NARROW CRYSTAL FILTER)

This filter provides a $500 \mathrm{~Hz} / 6 \mathrm{~dB}$ pass band in the CW operation. When the MODE Switch of IC-730 is set in the "CW.N" position, this filter is selected automatically.

6.2 PREPARATION

6-2-1 TOOLS FOR INSTALLATION

The following tools are needed for the installation of the options.

Tools	IC-EX195	IC-EX203	IC-EX202	IC-EX205	FL-44(A)	FL-30	FL-45
Philips Screwdriver	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	O
Screwdriver for 2 mm Hex-hole Screw	X	\bigcirc	O	X	X	X	X
Soldering Iron (20W~40W)	X	X	X	X	\bigcirc	0	0
Solder (rosin core)	X	X	X	X	\bigcirc	O	\bigcirc
De-soldering Braid	X	X	X	X	\bigcirc	X	X
Diagonal Cutter	X	X	X	X	\bigcirc	\bigcirc	\bigcirc
Long-nose Pliers	X	X	X	X	\bigcirc	\bigcirc	\bigcirc

NOTE: O means NEEDED, $\quad X$ means NOT NEEDED

6-2-2 PREPARATION

Before performing any work on the set, make sure that power cord is unplugged from the transceiver.

Remove the top cover by unscrewing the four screws on the top and the two screws at each side, while taking care not to damage the internal speaker and unplug its connector.

When installing IC-EX202 and/or IC-EX205, also remove the bottom cover by unscrewing the four screws on the bottom.

6-3 ASSEMBLY PROCEDURE

6-3-1 INSTALLATION OF THE IC-EX195 (MARKER UNIT)

1. PARTS LOCATION

(2) Plug P1 of this unit to J15 of the MAIN unit.

2. ASSEMBLY PROCEDURE

(1) Install this unit in the position shown in the photo using the attached screws.

(3) Plug P2 of this unit to J1 of the RF unit.

3. CHECKING THE OPERATION

(1) While performing the installation, set the marker switch of the unit to the "OFF" position and the marker frequency switch in the " $100 \mathrm{KHz}^{\prime}$ " position.
(2) Connect the plug of the internal speaker on the top cover to the original connector, or an external speaker to the external speaker jack on the rear panel.
(3) Make sure the power switch of your IC-730 is turned OFF. Set the other controls and switches in the receive mode according to the manual of IC-730. Then connect the power plug to the power socket of the IC-730.
(4) Turn the power switch of the IC-730 ON, and the set operates in the receive mode.
(5) Set the marker switch of this unit to the "ON" position and the marker frequency switch in the " 100 KHz " position. Then turn the tuning control knob, and you can receive a strong signal on every 100 KHz .
(6) Set the marker frequency switch in the " 25 KHz " position, and you can also receive a strong signal on every 25 KHz . These are the complete operations of the unit.
(7) When the operations are performed, unplug the power cord again and replace the speaker connector and covers.

4. CALIBRATION OF THE MARKER

(1) Set the MODE Switch in the "AM" position and BAND Switch in the " 10 MHz " position, then turn ON the POWER Switch.
(2) The FREQUENCY DISPLAY will show "10.100.0", Turn the TUNING CONTROL knob to tune to WWV (or other standard frequency station) on 10.000 MHz . Set the TUNING RATE Switch in 10 Hz steps for fine tuning.
(3) Turn ON the marker switch on the unit and adjust the FREQUENCY ADJUST trimmer on the unit to make "zero beat" with WWV.
(4) When you have performed the calibration, turn OFF the marker switch.

5. CALIBRATION OF THE TRANSCEIVER

(1) Set the MODE Switch in the CW position and the TUNING RATE Switch in 100 Hz position. Tune to the lower band edge of the band you want to calibrate, as an example, " 21.000 .0 ".
(2) Ground the Key jack on the rear panel so that the CW sidetone becomes audible. (Don't transmit.)
(3) Turn ON the marker switch, and adjust the FREQUENCY SET control of the set, so that the two tones are of the same pitch (in zero beat).
(4) The frequency calibration is sufficient on a frequency on the same band, but it is required for each band.

6-3-2 INSTALLATION OF THE IC-EX203 (CW AUDIO FILTER UNIT)

1. PARTS LAYOUT

2. INSTALLATION PROCEDURE

(1) Loosen two retaining screws of the upper sub-chassis, and turn the sub-chassis around hinges on the other end as shown in the photo.

(2) Loosen the front side screw of the shaft coupling sleeve of the band switch and remove the shaft sliding toward front side.
Install this unit to the position shown in the photo, using screws that have been attached.

(3) Replace the shaft and the upper sub-chassis. Unplug P11 inserted to J3 of the DET unit and plug it to J1 of IC-EX203.
(4) Plug P1 of IC-EX203 to J3 of the DET unit. Tighten the retaining screws of the sub-chassis.
(5) This unit does not require an adjustment, and provides $150 \mathrm{~Hz} / 6 \mathrm{~dB}$ pass band when the set is in the CW mode.

6-3-3 INSTALLATION OF THE IC-EX202 (LDA UNIT)

1. PARTS LAYOUT

2. INSTALLATION PROCEDURE

(1) Loosen the two retaining screws of the upper sub-chassis, and turn the sub-chassis around hinges on the other end as shown in the photo.

(2) Install this unit to the position shown in the photo using the screws that have been attached.
(3) Unplug P1 and P2 from J3 and J6 of the PREMIX unit located the bottom side.

(4) Loosen the screws of the shaft coupling sleeve of the band switch, and remove the shaft, sliding it towards the front side, then the sleeve and the spring pressing wafer of the band switch.

(5) Remove the wafer of the band switch from its shaft, taking care not to damage the wafer.

(6) Remove the cover of the PLL unit, and unplug connectors inserted to the unit. Then unscrew the four screws retaining the unit, and remove the unit from the chassis.
(7) Remove the wafer and its wiring harness through the slot under the band switch toward upper side.

(8) Run the cords with P1 and P2 of the LDA unit through the slot under the band switch. Plug P1 (6-pin plug attached to longer wires) to J3 and P2 (6-pin plug) to J6 of the PREMIX unit, so that the colors of the wires are the same order.
Replace the PLL unit by the reverse procedure of (6).

(9)Replace the wafer, spring, shaft and shaft coupling sleeve by the reverse procedure of (4) and (5)).
(10) Plug P1 (6-pin plug attached to longer wires) of the switch wafer to J1 of the LDA unit and P2 (6-pin plug) to J2.

(11) Remove the eight screws at each end of the rear panel.

(12) Turn over the rear panel right side, and unplug coaxial cables from J 1 and J 3 on the LPF board.

'(13) Run the cord with P3 (4-pin plug) of the LDA unit through the slot at the right corner of the rear box. Then plug P3 to J5 of the ACC unit.
(14) Replace unplugged connectors and the rear panel by the reverse procedure of (11) and (12).
This unit has no requirement for adjustment for operation.

3. CHECKING THE OPERATION

Connect a multimeter across $\operatorname{Pin} 13(+)$ and $\operatorname{Pin} 8(-)$ of the accessory socket on the rear panel.

Make sure the voltage shown in the chart is put out across the pins on each band.

Band Control Voltage Chart

BAND (MHz)	Band Control Voltage
3.5	$6.0 \sim 6.5 \mathrm{~V}$
7	$5.0 \sim 5.5 \mathrm{~V}$
14	$4.0 \sim 4.5 \mathrm{~V}$
18.21	$3.0 \sim 3.5 \mathrm{~V}$
24.28	$2.0 \sim 2.5 \mathrm{~V}$
10	$0 \sim 1.2 \mathrm{~V}$

6-3-4 INSTALLATION OF IC-EX205 (TRV UNIT)

1. PARTS LAYOUT

for free by

2. INSTALLATION PROCEDURE

(1) Remove the eight screws at each end of the rear panel.
(2) Turn over the rear panel right side or put it on the chassis, and unplug coaxial cables from J 1 and J 3 on the LPF unit.
(3) Install this unit to the position shown in the photo using the screws that have been attached.

(4) Connect P2 (with green wire) to J9 on the ACC unit, unplug P36 (2-pin plug) inserted J2 on the ACC unit, and plug it to J2 in the TRV unit.
Unplug P5 (orange wire from the PA unit) from J 8 on the ACC unit and plug it to J3 on the TRV unit, and plug P3 (with orange wire) of the TRV unit to J 8 on the ACC unit.
Unplug P3 (2-pin plug with coaxial cable from the LPF unit) from J 2 on the RF unit, and plug it to J 1 on the TRV unit. Then plug P1 (4-pin plug) of the TRV unit to J2 on the RF unit.

(5) Replace unpluged connectors and the rear panel by the reverse procedure of (1) and (2).

3. OPERATION

This unit has no requirement for adjustment for the operation.
When the transverter control signal (+8 V) is applied to Pin 11 of the ACCESSORY socket, the ALC terminal on the rear panel can be used for a VHF/UHF transverter INPUT/ OUTPUT terminal.

The transverter's input/output frequency and signal level should be as follows:

- Transverter INPUT/OUTPUT Frequency

$$
28 \sim 30 \mathrm{MHz}
$$

- Input/Output signal level

Transmit (Output): Max 150 mV across a 50 ohm load Receive (Input): $\quad 1 \mu \mathrm{~V}$ for $\mathrm{S} / \mathrm{N} 10 \mathrm{~dB}$

6-3-5 INSTALLATION OF THE FL-44 (A)

1. INSTALLATION PROCEDURE
(1) Unscrew the screws retaining the MAIN unit board and DET unit board, then turn them over so that foil side of the boards can be seen.

(2) Remove the solder of the mechanical filter's terminal pins and legs on the foil of the MAIN unit, by a desoldering braid, then take off the mechanical filter.

When the mechanical filter is "MF-455-11AZ", also remove C75 ~ C78 around the filter. (In the case of 'MF-455-11GZ", C75 ~ C78 are not used.)

(3) Insert the FL44 (A) to the position where the mechanical filter was installaed and retain it by two supplied nuts then solder its terminal pins.

(4) Replace the MAIN unit board and the DET unit board to the chassis by the reverse procedure of (1).
(5) No adjustment is required for operation.

6-3-6 INSTALLATION OF THE FL-30

1. INSTALLATION PROCEDURE

(1) Loosen two retaining screws of the upper sub-chassis, and turn the sub-chassis over around hinges on the other end as shown in the photo.

(2) Unscrew the screws retaining the 2nd IF unit board, then turn it over so that foil side of the board can be seen.

(3) The location for the filter is shown in the photo. The holes for mounting the legs and the leads of the filter are predrilled.

Be sure to orient the filter so that the input terminal (indicated on the bottom) of the filter is facing the same direction as shown on the photo.

Insert the filter flush with the board, bend the leads and legs flush with the opposite side of the board and solder them in.

Trim the leads even with the solder points. This completes the installation.
(4) Replace the 2nd IF unit, and unplug P3 inserted to J7 on the unit, then plug it to J8.

(5) Replace the sub-chassis by the reverse procedure of (1). No adjustment is required, and the filter provides the Pass-Band Tuning system.

6-3.7 INSTALLATION OF THE FL-45

1. INSTALLATION PROCEDURE

(1) Install the filter by the same procedure of the FL-30.
(2) The location for the filter is shown on the photo of 6-3-6.
(3) After replacing the 2nd IF unit board, unplug P2 inserted to J 5 , then plug it to J 6 on the 2 nd IF unit board.

(4) No adjustment is required, and the filter provides $500 \mathrm{~Hz} / 6 \mathrm{~dB}$ pass-band.

6.4 SCHEMATIC DIAGRAMS

IC-EXTEB (MARKER UNIT)

Some components subject to change for an improvement without notice.

SECTION 7 MECHANICAL PARTS AND DISASSEMBLY

PARTS ON FRONT PANEL

RF POWER CONTROL KNOB RF GAIN COTROL KNOB N-45 41935 MODE SWITCH KNOB N43 41933

MIC GAIN CONTROL KNOB, AF GAIN CONTROL KNOB 'N-44 41934

CONTROL KNOB N-4741938
S BAND SHIFT CONTROL KNOB N-4841939

FRONT PANEL DISASSEMBLY 1

FRONT PANEL DISASSEMBLY 3

FRONT PANEL DISASSEMBLY 5

FRONT PANEL DISASSEMBLY 6

SENSOR FRAME (20111)

SUB-CHASSIS (30243)

PARTS ON REAR PANEL

REAR PANEL DISASSEMBLY

PA UNIT DISASSEMBLY

PA UNIT DISASSEMBLY

REAR PANEL WIRING

MAIN UNIT PC BOARD DISASSEMBLY

CHASSIS CENTER
PLATE (30239)

RF UNIT CONNECTOR LOCATION

RF UNIT PC BOARD DISASSEMBLY

CHASSIS

(20113)

PREMIX UNIT CONNECTOR LOCATION

BPF UNIT CONNECTOR LOCATION

1
$-N$
$-N$

BPF UNIT DISASSEMBLY

PLL UNIT CONNECTOR LOCATION

PLL UNIT DISASSEMBLY

LOGIC UNIT DISASSEMBLY

SECTION 8 MAINTENANCE AND ADJUSTMENT

8-1 MEASURING INSTRUMENTS REQUIRED FOR ADJUSTMENT

(1) FREQUENCY COUNTER
(2) SIGNAL GENERATOR
(3) MULTIMETER
(4) AC MILLIVOLTMETER
(5) RF VOLTMETER
(6) RF WATTMETER (Terminal Type)
(7) AF OSCILLATOR
(8) OSCILLOSCOPE
(9) NOISE GENERATOR

FREQUENCY RANGE	$0.1 \cdot 90 \mathrm{MHz}$
ACCURACY	BETTER THAN $\pm 1 \mathrm{ppm}$
SENSITIVITY	100 mV or BETTER
FREQUENCY RANGE	$0.1 \mathrm{MHz} \cdot 40 \mathrm{MHz}$
OUTPUT VOLTAGE	$-20 \cdot 90 \mathrm{~dB}(0 \mathrm{~dB}=1 \mu \mathrm{~V})$
$50 \mathrm{~K} \Omega /$ VOLT OR BETTER	
MEASURING RANGE	$10 \mathrm{mV} \cdot 2 \mathrm{~V}$
FREQUENCY RANGE	$0.1 \cdot 80 \mathrm{MHz}$
MEASURING RANGE	$0.01 \cdot 10 \mathrm{~V}$
MEASURING RANGE	$20 \cdot 200 \mathrm{Watts}$
FREQUENCY RANGE	$1.8 \cdot 30 \mathrm{MHz}$
IMPEDANCE	500 HMS
SWR	LESS THAN 1.1
OUTPUT FREQUENCY	$200 \cdot 3000 \mathrm{~Hz}$
OUTPUT VOLTAGE	$0 \cdot 100 \mathrm{mV}$
FREQUENCY RANGE	$0 \mathrm{DC} \sim 20 \mathrm{MHz}$
MEASURING RANGE	$0.01 \cdot 10 \mathrm{~V}$

$0.01 \cdot 10 \mathrm{~V}$

NOTE: indicates an adjusting or instrument connecting point.
indicates an instrument connecting point and its readings.
These also are used in the board layout and schematic diagrams.

8-2 PLL ADJUSTMENT

Adjustment item	Adjusting procedures	Measuring location				Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT			UNIT	Parts		
LO adjustment	1) Connect an RF voltmeter to R11 of the PLL unit. 2) Adjust L1 and L2 so that the level becomes maximum.	RF voltmeter	PLL	R11	(1)	PLL	L1, L2	Maximum 100 mV or more.	101
Locked loop adjustment	1) Connect the oscilloscope (for 20 MHz) to R26 of the PLL UNIT. 2) Adjust L3 and L4 so that the level becomes maximum.	Oscilloscope	PLL	R26	(2)	PLL	L3, L4	Maximum $2.5 \mathrm{Vp-p}$ or more.	102
Lock adjustment	1) Set the mode switch to AM or CW and display frequency at 13.900 .0 MHz . 2) Connect the oscilloscope to R28 of the PLL UNIT. 3) Adjust the core of $\mathbf{L 8}$ so that the voltage is 4.8 to 5.2 V . 4) Set the displayed frequency at 14.599 .0 MHz . 5) Adjust the core of LB so that the voltage is $\mathbf{1 . 8}$ to 2.2 V .	Oscilloscope or DC voltmeter	PLL	R28	(3)	PLL	L8	$\begin{aligned} & 4.8 \sim 5.2 \mathrm{~V} \\ & (13.900 .0 \mathrm{MHz}) \\ & 1.8 \sim 2.2 \mathrm{~V} \\ & (14.599 .0 \mathrm{MHz}) \end{aligned}$	103

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Adjustment item} \& \multirow[b]{2}{*}{Adjusting procedures} \& \multicolumn{4}{|c|}{Measuring location} \& \multicolumn{2}{|l|}{Adjusting location} \& \multirow[b]{2}{*}{Instrument reading} \& \multirow[t]{2}{*}{Number of adjusting location} \\
\hline \& \& Measuring instruments \& UNIT \& \multicolumn{2}{|c|}{Terminal} \& UNIT \& Parts \& \& \\
\hline PLL frequency adjustment \& \begin{tabular}{l}
1) Set the mode switch to \(A M\) or \(C W\) and displayed frequency at 13.900 .0 MHz . \\
2) Set the FREQUENCY SET R162, of MAIN UNIT to the center position. \\
3) Connect the frequency counter to R11 of the PLL UNIT. \\
4) With the RIT SW turned OFF, adjust the frequency at R2 of the RIT PCB to \(41.000: 0 \mathrm{MHz}\). \\
5) With the RIT SW turned ON and RIT knob placed at the center position adjust the frequency at R2 of the RIT PCB to 41.000 .0 MHz . \\
6) Connect the frequency counter to \(P 1\) of PLL. \\
7) Adjust C31 of PLL UNIT so that the frequency becomes 13.200 .0 MHz .
\end{tabular} \& \begin{tabular}{l}
Frequency counter \\
Frequency counter
\end{tabular} \& PLL

PLL \& R11

P1 \& \begin{tabular}{l}
(4)

(1)

(5)

 \&

RIT

RIT

PLL

 \&

(R162)

R2

R3

 \&

(Center)

41.000 .0 MHz

41.000 .0 MHz

13.200 .0 MHz
\end{tabular} \&

\hline PRE MIX frequency adjustment \& | 1) MODE: AM or CW |
| :--- |
| 2) Connect the frequency counter to P3 of B.P.F UNIT. | \& Frequency counter \& B.P.F. \& P3 \& (6) \& PRE. MIX \& \& \&

\hline
\end{tabular}

Adjustment item	Adjusting procedures	Measuring location				Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT	Term		UNIT	Parts		
PRE MIX frequency adjustment (continued)	3) With the displayed frequency sequentially varied, adjust each coil at the PRE MIX UNIT to the following frequencies.						L1 L2 L3 L4 L5 $L 6$ L7 L8 L9 $L 10$ L11	43.331 .50 MHz 46.831 .50 49.831 .50 53.831 .50 57.831 .50 60.831 .50 64.331 .50 67.831 .50 68.331 .50 68.831 .50 69.331 .50	107
BFO adjustment	1) Mode: USB (receiving) 2) Connect the frequency counter to R46 of DET PCB. 3) Shunt the cathode of D4 to ground using a clip. 4) Set the frequency to 9.012 .90 MHz with C40 of DET PCB. 5) Transmitting in the CW mode, adjust L2 of DET PCB so that the frequency becomes 9.011 .50 MHz .	Frequency counter	DET	R46 D4 ground	(7) (8)	DET DET	C40 L2	$\begin{aligned} & 9.012 .90 \mathrm{MHz} \\ & 9.011 .50 \mathrm{MHz} \end{aligned}$	

Adjustment item	Adjusting procedures	Measuring location				Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT	Terminal		UNIT	Parts		
BFO adjustment (continued)	6) Returning to the receiving in the CW mode, adjust L 3 for 9.010 .70 MHz . 7) Receicing in the LSB mode, adjust L4 for 9.010 .10 MHz .					DET DET	L3 L4	$\begin{aligned} & 9.010 .7 \mathrm{MHz} \\ & 9.010 .10 \mathrm{MHz} \end{aligned}$	110 111
IF SHIFT adjustment	1) Connect the frequency counter to D4 of MAIN UNIT. 2) Shift the IF SHIFT knob fully left. 3) Adjust L11 of MAIN UNIT for 9.468 .30 MHz . (For the old type, adjust for 9.468 .00 MHz .) 4) Return the knob to a center. 5) Adjust R3 of REG PCB for 9.466 .5 MHz. 6) With the knob shifted fully right confirm that the frequency becomes $9.464 .7 \mathrm{MHz} \pm 200 \mathrm{~Hz}$. (For the old type, $9.465 .0 \mathrm{MHz} \pm 200 \mathrm{~Hz}$.) 7) Adjust R66 of MAIN UNIT for 9.466.5 MHz during transmission.	Frequency counter	MAIN	D4	(9)	MAIN MAIN REG MAIN	L11 R3 R66	9.468.30 MHz $\begin{aligned} & \text { Contirm } \\ & 9.466 .50 \mathrm{MHz} \\ & 9.464 .70 \mathrm{MHz} \\ & \pm 200 \mathrm{~Hz} \\ & \\ & \\ & 9.466 .50 \mathrm{MHz} \end{aligned}$	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Adjustment item} \& \multirow[b]{2}{*}{Adjusting procedures} \& \multicolumn{4}{|c|}{Measuring location} \& \multicolumn{2}{|l|}{Adjusting location} \& \multirow[b]{2}{*}{Instrument reading} \& \multirow[t]{2}{*}{Number of adjusting location} \\
\hline \& \& Measuring instruments \& UNIT \& Termi \& \& UNIT \& Parts \& \& \\
\hline \begin{tabular}{l}
2nd LO \\
adjustment
\end{tabular} \& \begin{tabular}{l}
1) Set mode switch to \(A M\) and frequency to 14.100 .0 MHz . \\
2) Connect the frequency counter to R5 of RF UNIT and unplug J 3 . \\
3) Place in the transmitting condition with RF POWER control set to maximum. \\
4) Adjust L1 of 2nd LO PCB for 14.100 .0 MHz . \\
5) Select 100 Hz steps by pushing the 100 Hz tuning rate switch. \\
6) Adjust the tuning control so that displayed freqeuncy is 14.099 .9 MHz . \\
7) Adjust R93 of MAIN UNIT for 14.099 .9 MHz .
\end{tabular} \& Frequency counter \& RF \& R5 (J3) \& \begin{tabular}{l}
\[
10
\] \\
(11)
\end{tabular} \& \begin{tabular}{l}
2nd LO \\
MAIN
\end{tabular} \& L1

R93 \& 14.100 .0 MHz

14.099 .9 MHz \&

\hline
\end{tabular}

PLL UNIT

PREMIX UNIT

2ND IF UNIT

MAIN UNIT

REG UNIT

RIT UNIT

RF UNIT

8-3 RECEIVER ADJUSTMENT

Adjustment item	Adjusting procedures	Measuring location			Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT	Termin	UNIT	Parts		
AGC GAIN adjustment	Adjusting conditions: - MODE: USB - Displayed frequency: 14.098 .5 MHz . - RF GAIN: MAX - IF SHIFT: CENTER - RIT : OFF - AGC: FAST - PRE AMP: OFF 1) Connect the $A C$ millivoltmeter to external SP terminal in parallel with 8 -ohms speaker. 2) Connect SSG to the ANT connector. Rotating the tuning control with the frequency set to 14.100 .0 MHz , receive with the maximum reading of the milivoltmeter. 3) With input from SSG set to $+14 \mathrm{~dB} \mu$ (loaded), adjust L1 of DET PCB for minimum reading. 4) Adjust AF GAIN so that reading of the millivoltmeter becomes 1 V . 5) With SSG output turned OFF, adjust L6 of MAIN UNIT so that reading of the millivoltmeter is lowered 30 dB than the reading obtained in above 4). At the time, adjust $\mathrm{L6}$ in the direction where core goes down.	AC millivolt- meter 8-ohms speaker SSG	Rear panel Rear panel	EXT.SP ANT	DET MAIN	L1 L6	Minimum	201 202

Adjustmentitem	Adjusting procedures	Measuring location			Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT	Terminal	UNIT	Parts		
S meter SET	1) With input from SSG set to $+14 \mathrm{~dB} \mu$ (terminating value), adjust R42 of MAIN UNIT for S2 on the S-meter. 2) With input from SSG set to $+84 \mathrm{~dB} \mu$ adjust at R41 of MAIN UNIT for full scale on the S-meter. 3) Repeat above 1) and 2) several times.	$\begin{aligned} & \text { SSG } \\ & (+14 \mathrm{~dB} \mu) \\ & (+84 \mathrm{~dB} \mu) \end{aligned}$			MAIN MAIN	R42 R41	$S=2$ $S=F U L L$	203 204
Receiving sensitivity measurement N.B. Check	Confirm that: With the PREAMP switch turned OFF, the receiving sensitivity is $-10 \mathrm{~dB} \mu /$ SN ratio 10 dB or more. With the PREAMP switch turned ON, the receiving sensitivity is $-16 \mathrm{~dB} \mu /$ SN ratio 10 dB or more in all bands. Confirm that N.B. has effect by applying NOISE signal from ANT connector in all bands.					\cdots		

8-4 TRANSMITTER ADJUSTMENT

Adjustmentitem	Adjusting procedures	Measuring location				Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT	Tern		UNIT	Parts		
SWR meter adjustment	1) Set the mode switch to CW , band switch to 14 MHz and meter to RF . 2) Connect $\mathbf{5 0}$-ohms dummy Load or RF wattmeter to the ANT connector. 3) Rotate R82 of MAIN UNIT and RF POWER Control fully clockwise. 4) Set S1 of MAIN UNIT to SWR. 5) Adjust C31 of FILTER PCB so that the meter deflection becomes minimum in transmit mode.	50-ohms dummy Load or RF wattmeter	Rear panel	ANT (R82) (S1)	$\left(\begin{array}{l} (12) \\ \hline 12 \end{array}\right.$	FILTER	C31	Minimum meter deflection.	301
ALC adjustment	1) Set the mode switch to CW and band switch to 14 MHz . 2) Set S1 of MAIN UNIT to RF POWER side. Rotate RF POWER control on the front panel fully clockwise. 3) Connect 50 -ohms wattmeter to the ANT connector. 4) Set meter switch on the front panel to ALC side. 5) Ground the KEY terminal on the rear panel.	RF wattmeter	Rear panel.	(S1) ANT	(13)				

Adjustment item	Adjusting procedures	Measuring location				Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT	Terminal		UNIT	Parts		
ALC adjustment (continued)	6) Adjust R150 of the MAIN unit so that reading of RF wattmeter becomes 100W. 7) Set the RF POWER control on the front panel to minimum. 8) Adjust R149 of MAIN UNIT for 10 W 9) Adjust R91 of the MAIN unit so that the meter deflection becomes at the right end on the ALC scale. 10) Repeat adjustment of above 6) and 8) several times.					MAIN MAIN MAIN	R150 R149 R91	100W 10W	302 303 304
AM 40W adjustment	1) Set the mode switch to AM. Rotate RF POWER control on the front panel fully clockwise. 2) Adjust R151 of MAIN UNIT so that the RF wattmeter's reading becomes 40W.					MAIN	R151	40W	305
Confirming of current on each band	1) Removing upper solder on R48 of RF UNIT. not recessary it 10, 18,24.5 TX emabled. 2) Confirm CW and $A M$ power in each band. CW: $90 \sim 120 W$, AM: $35 \sim 50 W$ *For 28 MHz band, see the next page.			(R48)	(14)			Confirming RF power. CW: 90~120W AM: 35~50W	

Adjustment item	Adjusting procedures	Measuring location				Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT	Terminal		UNIT	Parts		
Confirming of current on each band (continued)	3) Make sure that total current at 100 W CW does not exceed 19A. 4) Return solder to the initial place.							Confirming of current. CW: 19A in any band.	
50W adjustment	1) Set S3 of MAIN UNIT to 50W side, and adjust R168 of the MAIN UNIT for $60 W$. Confirm that the output power on other bands is within 40 to 70 W range. 2) Then, return $S 3$ to 100 W side.	RF wattmeter	Rear panel	ANT		MAIN	R168	60W 40 to 70 W in the bands other than 28 MHz .	306
SSB carrier balancing adjustment	1) Set mode swtich to SSB, SPEECH PROCESSOR switch (S2 of MAIN UNIT) to OFF and MIC GAIN control to minimum.			(S2)	(16)				
	2) Connect a spectrum analyzer to the ANT connector and adjust R44 and R45 of DET PCB so that the carrier leak at LSB and USB becomes minimum.	Spectrum analyzer	Rear panel	ANT		DET	R44, R45	Confirm that carrier level is between 50 and 60 dB below carrier (CW 100W) in any band.	307

Adjustment item	Adjusting procedures	Measuring location				Adjusting location		Instrument reading	Number of adjusting location
		Measuring instruments	UNIT	Terminal		UNIT	Parts		
Speech processor adjustment	1) Set mode switch to SSB or AM. 2) Connect an AF oscillator to MIC connector. Oscillator output: $1.5 \mathrm{kHz} \mathrm{100mV}$ 3) Connect oscilloscope to R103 of MAIN UNIT. 4) Adjust R99 of MAIN UNIT so that clipping waveform on the oscillosocpe becomes equal.	AF oscillator Oscilloscope	Front MAIN	MIC R103	(17)	MAIN	R99	Waveform clip should be symmetrical in upper and lower side.	308
RF meter adjustment	1) Set meter swtich toRF side, $S 1$ of the MAIN UNIT to POWER side, mode switch to $C W$, band to 14 MHz and RF power control to MAX. 2) Adjust R82 of MAIN unit so that RF meter becomes full scale. 3) With S1 of MAIN UNIT set to SWR side, confirm that the meter indicates 1.2 or less on the SWR scale (in any band).	RF meter				MAIN	R82	Full scale 1.2 or less	309
APC check	1) Remove cable of ANT connector during transmission as above. 2) Confirm that total current at that time is less than 10A.							Confirm that total curren in any band is less than 10A.	

MAIN UNIT

FILTER UNIT

SECTION 9 VOLTAGE (CIRCUIT) GIAGRAMS

MAIN UNIT CIRCUIT \& VOLTAGE DIAGRAM

for free by

for free by
RadioAmateur,eu

RF UNIT CIRCUIT \& VOLTAGE DIAGRAM

LOGIC UNIT CIRCUIT \& VOLTAGE DIAGRAM

RadioAmateur,eu

(26)

(16)

(20)

(22)
(3)

(27)

1C1-14(E2)TRIGGER

๗.: ШШШШ
\qquad
(28) VFO PITCH

(29) BAND SW

1C1-12(EO)TRIGOER
$150 \mu \mathrm{~S}$

(30) MODE SW

BAND	MaOE	$\begin{gathered} 54 \\ 2 \end{gathered}$	$\begin{gathered} J 4 \\ 3 \end{gathered}$	$\begin{aligned} & 34 \\ & 4 \end{aligned}$	$\begin{gathered} 54 \\ 8 \end{gathered}$	$1 C 7$	$\begin{gathered} 147 \\ 13 \end{gathered}$	$\begin{gathered} 1<7 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { IC7 } \\ 11 \end{gathered}$
$\begin{array}{r} 3.5 \sim 7 \\ \mathrm{MHz} \end{array}$	c w	L	L	L	L	2	L	L	L
	LSB	H	L	H	H	L	L	H	L
	US8	H	H	L	L	1	H	L	H
$\begin{gathered} 10 \sim 28 \\ M H z \end{gathered}$	CW	L							
	LSB	H	L	H	H	H	1	L	H
	USB	H	H	L	L	H	H	H	L

for free by
2ND IF UNIT CIRCUIT \& VOLTAGE DIAGRAM

for free by
RadioAmateur,eu
PRE. MIX UNIT CIRCUIT \& VOLTAGE DIAGRAM

for free by
DET UNIT CIRCUIT \& VOLTAGE DIAGRAM

for free by

for free by
(PA P2)

DISPLAY UNIT CIRCUIT DIAGRAM

ACC UNIT CIRCUIT DIAGRAM

for free by

REG UNIT CIRCUIT DIAGRAM

SENCOR UNIT CIRCUIT DIAGRAM

[EF] UNIT

ref. No. description part no.

[EF] UNIT
ref. no. description part no.

$J 1$	Connector	L035-1-2 (PHONES)
J2	Connector	FM214-8SS (MIC)
J4	Pin Jack	AT-700 (EXT ALC)
J5	Pin Jack	AT-700 (M BACK UP)
56	Jack	LJ102 (KEY)
J7	Jack	HSJ0779-01A (EXT SP)
J9	Jack	FM-MD-RM1 (ANT)
J13	Universal	SO-2054 (GROUND)
B1	PC. Board	B-483B (RIT)
B2	PC. Board	B-484A (SW1)
B3	PC. Board	B-485C (SW2)
B4	PC. Board	B-486A (MIC)
P1	Connector	5250-2A
P2	Connector	5250-2A
P3	Connector	5250-2A
P4	Connector	5250-4A
P6	Connector	5250-2A
P7	Connector	5250-2A
P11	Connector	5250-2A
P12	Connector	-5250-4A
P13	Connector	5250-4A
P14	Connector	5250-4A
P15	Connector	5250-4A
P16	Connector	5250-4A
P17	Connector	5250-4A
P18	Connector	5250-4A
P20	Connector	5250-6A
P21	Connector	5250-4A
P22	Connector	5250-4A
P23	Connector	5250-6A
P24	Connector	5250-4A
P25	Connector	1545P-1
P27	Connector	SMR-06V-B
P28	Connector	5250-04A
P29	Connector	5250-04A
P30	Connector	5250-06A
P31	Connector	5250-02A
P32	Connector	5250-04A
P33	Connector	5250-02A
P34	Connector	5250-02A
P35	Connector	5250-02A
P36	Connector	5250.02A
P37	Connector	SMF-01T-1.3
P38	Connector	5250-04A
P39	Connector	5250.04A
P40	Connector	1625-03P-1
P41	Connector	1625-03R-1
P42	Universal	LED Socket
P43	Universal	LED Socket
FH1	Fuse Holder	SN11-2
F1	Fuse	5A

REF. NO.	DESCRIPTION	PART No.	REF. No.	DESCRIPTION	PART NO.	
01	FET	2SK125	R18	Resistor	47	ELR25
02	FET	2SK125	R19	Resistor	220	ELR25
03	Transistor	2SC945P	R20	Resistor	47	ELR25
04	Transistor	2 SC2053	R21	Resistor	220	ELR25
05	Transistor	2SC945P	R22	Resistor	47	ELR25
$\bigcirc 6$	FET	3SK81 (3SK51)	R23	Resistor	220	ELR25
07	FET	3SK74M	R24	Resistor	47	ELR25
08	Transistor	$2 \mathrm{SC945}$	R25	Resistor	220	ELR25
09	Transistor	2SB562	R26	Resistor	47	ELR25
			R27	Resistor	220	ELR25
D1	Diode	15553	R28	Resistor	47	ELR25
D2	Diode	$15 S 53$	R29	Resistor	220	ELR25
D3	Diode	1SS53	R30	Resistor	47	ELR25
D4	Diode	15597	R31	Resistor	220	ELR25
D5	Diode	15597	R32	Resistor	47	ELR25
D6	Diode	$1 \mathrm{SS97}$	R33	Resistor	390	ELR25
D7	Diode	15597	R34	Resistor	470	ELR25
D8	Diode	15853	R36	Resistor	1 M	ELR25
D9	Diode	15853	R37	Resistor	150	ELR25
D10	Diode	1SS53	R38	Resistor	100	ELR25
D11	Diode	15553	R39	Resistor	2.2K	ELR25
D12	Diode	15553	R40	Resistor	150	ELR25
D13	Diode	15853	R41	Resistor	47K	ELR25
D14	Diode	15553	R42	Resistor	47K	ELR25
D15	Diode	15853	R43	Resistor	1 K	ELR25
D16	Diode	1 1S553	R44	Resistor	470	ELR25
D17	Diode	1 SS53	R45	Resistor	1 K	ELR25
D18	Diode	15553	R46	Resistor	2.2K	ELR25
D19	Diode	15553	R47	Resistor	100	ELR25
D20	Diode	15853	R48	Resistor	680	R25
D21	Diode	1SS53	R49	Resistor	10K	ELR25
D22	Diode	15553	R50	Resistor	22K	ELR25
D23	Diode	15553	R51	Resistor	4.7K	ELR25
D25	Diode	$15 S 53$	R52	Resistor	1 K	ELR25
D26	Diode	1 SS53	R53	Resistor	1 K	ELR25
D27	Diode	15553				
D28	Diode	1SS53	C1	Barrier Lay	0.0012	50 V
D29	Diode	15853	C2	Barrier Lay	0.0068	50 V
D30	Zener	XZ082	C3	Barrier Lay	0.001	50 V
D31	Diode	1SS53	C4	Barrier Lay	0.047	25 V
D32	Diode	1 SS53	C5	Barrier Lay	0.047	25 V
D33	Diode	$1 \mathrm{SS53}$	C6	Barrier Lay	0.047	25 V
D34	Diode	$1 \mathrm{1S553}$	C7	Barrier Lay	0.047	25V
			C8	Ceramic	0.0047	50 V
F11	Crystal Filter Crystal Filter	39M15A (39.7315MHz)	C9	Barrier Lay	0.047	25 V
F12			C10	Ceramic	0.0047	50 V
			C11	Barrier Lay	0.1	12V
R1	Resistor	22 ELR25	C12	Barrier Lay	0.0015	50 V
R2	Resistor	22 ELR25	C13	Ceramic	0.0047	50 V
R3	Resistor	10K ELR25	C14	Ceramic	3 P	50 V
R4	Resistor	22K ELR25	C15	Ceramic	0.0047	50 V
R5	Resistor	4.7K R25	C16	Ceramic	10P	50 V
R6	Resistor	100 ELR25	C17	Ceramic	1 P	50 V
R7	Resistor	680 ELR25	C18	Ceramic	10P	50 V
R8	Resistor	$4.7 \quad \mathrm{R} 25$	C19	Ceramic	0.0047	50 V
R9	Resistor	1 ELR25	C20	Ceramic	0.0047	50 V
R10	Resistor	220 R25	C21	Ceramic	15P	50 V
R11	Resistor	56 ELR25	C22	Ceramic	1.5P	50 V
R12	Resistor	100 ELR25	C23	Ceramic	15P	50 V
R13	Resistor	10K ELR25	C24	Ceramic	0.0047	50 V
R14	Resistor	4.7K R25	C25	Ceramic	0.0047	50 V
R15	Resistor	2.2K ELR25	C26	Ceramic	18P	50 V
R16	Resistor	100 ELR25	C27	Ceramic	2 P	50 V
R17	Resistor	220 ELR25	C28	Ceramic	18	50 V

[RF] UNIT

REF. NO. DESCRIPTION

C29	Ceramic	0.0047	50 V
C30	Ceramic	0.0047	50 V
C31	Ceramic	8P	50 V
C32	Ceramic	0.75P	50 V
C33	Ceramic	8P	50 V
C34	Ceramic	0.0047	50 V
C35	Ceramic	0.0047	50 V
C36	Ceramic	15P	50 V
C37	Ceramic	1 P	50 V
C38	Ceramic	15P	50 V
C39	Ceramic	0.0047	50 V
C40	Ceramic	0.0047	50 V
C41	Ceramic	24P	50 V
C42	Ceramic	2 P	50 V
C43	Ceramic	24P	50 V
C44	Ceramic	0.0047	50 V
C45	Barrier Lay	0.047	25 V
C46	Ceramic	47P	50 V
C47	Ceramic	4P	50 V
C48	Ceramic	47P	50 V
C49	Barrier Lay	0.047	25V
C50	Barrier Lay	0.047	25 V
C51	Ceramic	100P	50 V
C52	Ceramic	22P	50 V
C53	Ceramic	100P	50 V
C54	Barrier Lay	0.047	25V
C55	Ceramic	0.0047	50 V
C56	Ceramic	0.0047	50 V
C57	Ceramic	5P	50 V
C58	Ceramic	5P	50 V
C59	Caramic	0.0047	50 V
C60	Barrier Lay	0.047	25V
C61	Barrier Lay	0.047	25V
C62	Ceramic	5P	50 V
C63	Ceramic	10P	50 V
C64	Ceramic	0.0047	50 V
C65	Ceramic	5P	50 V
C66	Ceramic	0.0047	50 V
C67	Barrier Lay	0.1	12 V
C68	Ceramic	0.0047	50 V
C69	Ceramic	27P	50 V
C70	Ceramic	0.0047	50 V
C71	Ceramic	24P	50 V
C72	Ceramic	0.0047	50 V
C73	Ceramic	0.0047	50 V
C74	Ceramic	0.0047	50 V
C75	Ceramic	22P	50 V
C76	Ceramic	220P	50 V
C77	Ceramic	0.0047	50 V
C78	Barrier Lay	0.047	12V
C79	Barrier Lay	0.047	12V
C80	Ceramic	0.0022	50 V
C81	Ceramic	0.001	
C82	Ceramic	10P	
C83	Ceramic	22P	
C84	Ceramic	0.001	
$L 1$	Coil	EL0810SKI-2R2K	
L2	Coil	EL0810SKI-1R8K	
L3	Coil	LR-18	
L4	Coil	LR-121	
L5	Coil	LR20	
L6	Choke	EL0810SKI-101K	
L7	Choke	EL0810SK1-101K	

[RF] UNIT
REF. NO. DESCRIPTION PART NO.

L8	Choke	EL0810SKI-101K
L9	Coil	LS-197
L10	Coil	LS-197
L11	Coil	LS-197
L12	Coil	LS-197
L13	Coil	LS-197
L14	Coil	LS-197
L15	Coil	LS-196
L16	Coil	LS-196
L17	Coil	LS-196
L18	Coil	LS-196
L19	Coil	LS-195
L20	Coil	LS-195
L21	Coil	LS-195
L22	Coil	LS-195
L23	Coil	LS-194
L24	Coil	LS-194
L25	Coil	LR-116
L26	Coil	LR-116
L27	Coil	LS-207
L28	Coil	LS-207
L29	Coil	LS-207
L30	Coil	LS-215
L31	Coil	LS-114
L32	Coil	LS-114
L33	Coil	LS-114
RL1	Relay	BR221D012
J1	Connector	$5045-2 A$
J2	Connector	$5045-4 A$
J3	Connector	$5045-2 A$
J4	Connector	$5045-2 A$
J5	Connector	$5045-6 A$
J6	Connector	$5045-2 A$
P1	Connector	$5250-8 A$
B1		P.C. Board
B-474D		

[2nd] 1	UNIT		- [2nd IF	UNIT		
REF. NO.	DESCRIPTION	PART NO.	REF. NO.	DESCRIPTION	PART NO.	
IC1	IC	TA7124P	R23	Resistor	10K	ELR25
IC2	IC	M51201L	R24	Resistor	100	ELR25
			R25	Resistor	100K	ELR25
01	FET	3SK74M	R26	Resistor	100K	ELR25
Q2	FET	3SK74M	R27	Resistor	470	ELR25
Q3	Transistor	2SC945P	R28	Resistor	15K	ELR25
O4	Transistor	2SC945P	R29	Resistor	100K	ELR25
Q5	Transistor	2SC945P	R30	Resistor	100	R25
Q6	Transistor	2SA1015	R31	Resistor	22K	ELR25
07	Transistor	2SC945P	R33	Resistor	470	ELR25
Q8	Transistor	2SA1015	R34	Resistor	10K	R25
09	Transistor	2SC945P	R36	Resistor	100	R25
			R37	Resistor	2.7 K	ELR25
D1	Diode	15599	R38	Resistor	15K	R25
D2	Diode	$1 \mathrm{SS99}$	R39	Resistor	100	ELR25
D3	Diode	15599	R40	Resistor	22	ELR25
D4	Diode	15599	R41	Resistor	470	ELR25
D5	Diode	1SS53	R42	Resistor	100K	ELR25
D6	Diode	1 SS53	R43	Resistor	4.7K	ELR25
D7	Diode	1 SS53	R44	Resistor	1K	ELR25
D8	Diode	1 SS53	R45	Resistor	47K	ELR25
D9	Diode	1 SS53	R46	Resistor	100K	ELR25
D 10	Diode	1 SS53	R47	Resistor	10K	ELR25
D11	Diode	1 SS53	R48	Resistor	4.7K	R25
D12	Varactor Diode	SVC303Y	R49	Resistor	470	ELR25
D13	Diode	1SS53	R50	Resistor	22K	ELR25
D14	Diode	1N60	R51	Resistor	4.7K	ELR25
D15	Diode	1 SS53	R52	Resistor	270	ELR25
D16	Varistor	MV11	R53	Resistor	10K	ELR25
D17	Diode	1SS53	R54	Resistor	10K	ELR25
D18	Diode	$1 \mathrm{SS53}$	R55	Resistor	10K	ELR25
D19	Varactor Diode	1 T 25	R56	Resistor	10K	R25
D20	Diode	15953	R57	Resistor	22	ELR25
D21	Diode	15953	R58	Resistor	22	ELR25
D22	Diode	1 SS53	R59	Resistor	2.2K	R25
D23	Diode	1 SS53	R60	Resistor	100	ELR25
D24	Diode	15953				
			C1	Ceramic	0.0047	50 V
X1	Crystal	CR4 (30.72MHz)	C2	Ceramic	0.0047	50 V
			C3	Cylinder	100P	50 V
F19	Crystal Filter	9M10A (9.0115 MHz)	C4	Ceramic	27P	50 V
			C5	Ceramic	68P	50 V
R1	Resistor	2.2K ELR25	C6	Mylar	0.01	50 V
R2	Resistor	1K ELR25	C7	Ceramic	0.0047	50 V
R3	Resistor	2.2K ELR25	C8	Electroly.	10	16 V
R4	Resistor	2.2K ELR 10	C9	Ceramic	20P	50 V
R5	Resistor	100 R25	C10	Ceramic	0.0047	50 V
R6	Resistor	10K ELR25	C11	Ceramic	120P	50 V
R7	Resistor	100 R25	C12	Ceramic	0.001	50 V
R8	Resistor	10K ELR25	C13	Ceramic	0.0047	50 V
R9	Resistor	1K ELR25	C14	Ceramic	0.0047	50 V
R10	Resistor	1K ELR25	C15	Ceramic	0.001	50 V
R11	Resistor	2.2K ELR25	C16	Ceramic	0.0047	50 V
R12	Resistor	2.2K ELR25	C17	Ceramic	120P	50 V
R13	Resistor	100 ELR25	C18	Ceramic	0.0047	50 V
R14	Resistor	1K ELR25	C19	Ceramic	0.0047	50 V
R15	Resistor	390 ELR25	C20	Ceramic	0.0047	50 V
R16	Resistor	2.2K ELR25	C21	Ceramic	0.0047	50 V
R17	Resistor	1.8K ELR25	C22			
R18	Resistor	10K ELR25	C23	Ceramic	0.0047	50 V
R19	Resistor	10K ELR25	C24	Ceramic	33P	50 V
R20	Resistor	10K ELR25	C25			
R21	Resistor	4.7K ELR25	C26	Ceramic	0.0047	50 V
R22	Resistor	22K ELR25	C27	Ceramic	0.0047	50\%

REF. NO.	DESCRIPTION	PART NO.	
C29	Ceramic	0.0047	50 V
C30	Ceramic	0.001	50 V
C31	Ceramic	12P	50 V
C32	Ceramic	0.0047	50 V
C33	Cylinder	10P	50 V
C34	Ceramic	0.0047	50 V
C36	Ceramic	0.0047	50 V
C37	Ceramic	30P	50 V
C38	Ceramic	0.0047	50 V
C39	Ceramic	0.0047	50 V
C40	Ceramic	0.0047	50 V
C41	Ceramic	0.0047	50 V
C42	Electroly.	0.47	50 V
C43	Ceramic	15P	50 V
C44	Ceramic	0.0047	50 V
C45	Ceramic	100P	50 V
C46	Ceramic	0.0047	50 V
C47	Ceramic	0.0047	50 V
C48	Electroly.	10	16 V
C51	Ceramic	15P	50 V
C52	Ceramic	0.0047	50 V
C53	Ceramic	27P	50 V
C54	Ceramic	0.0047	50 V
C55	Ceramic	0.0047	50 V
C56	Barrier Lay	0.1	12 V
C59	Ceramic	0.0047	50 V
C60	Ceramic	0.0047	50 V
C61	Ceramic	0.0047	50 V
C62	Ceramic	0.0047	50 V
C63	Ceramic	0.0047	50 V
C64	Ceramic	0.0047	50 V
C65	Ceramic	0.0047	50 V
L1	Coil	LS-198	
L3	Coil	LS-199	
L4	Coil	LS-199	
L5	Coil	LS-116	
L6	Coil	LS-116	
L7	Coil	LS-187	
L8	Coil	LS-188	
L9	Coil	LS-188	
L10	Coil	LS-187	
L11	Coil	LS-198	
L12	Coil	LS-189	
L13	Coil	LS-200	
$J 1$	Connector	5045-2A	
J2			
J3	Connector	5045-4A	
$J 4$	Connector	5045-2A	
J5	Connector	RT-01T-1.3B	
J6	Connector	RT-01T-1.3B	
$J 7$	Connector	RT-01T-1.3B	
J8	Connector	RT-01T-1.3B	
J9	Connector	RT-01T-1.3B	
J10	Connector	RT-01T-1.3B	
J11	Connector	RT-01T-1.3B	
J12	Connector	RT-01T-1.3B	
P1	Connector	5250-2A	
P2	Connector	SMF-01T-1.3	
P3	Connector	SMF-01T-1.3	
P4	Connector	5250-02A	

[2nd IF]	UNIT	
REF. NO.	DESCRIPTION	PART NO.
B1	P.C. Board	B-475C
B2	P.C. Board	B-493A

[MAIN] UNIT
REF. NO. DESCRIPTION PART NO.

IC1	IC	$\mu \mathrm{PC} 2002 \mathrm{~V}$	R5	Resistor	100	ELR25
IC2	IC	NJM4558D	R6	Resistor	4.7K	ELR25
IC3	IC	NJM4558D	R7	Resistor	100	ELR25
$1 \mathrm{C4}$	IC	NJM4558D	R8	Resistor	2.2K	ELR25
IC5	IC	NJM4558D	R9	Resistor	10K	ELR25
IC6	IC	NJM4558D	R10	Resistor	100K	ELR25
			R11	Resistor	10K	ELR25
01	FET	3SK74M	R12	Resistor	100	ELR25
02	Transistor	2SC945P	R13	Resistor	4.7K	ELR25
Q3	FET	3SK74M	R14	Resistor	3.3K	ELR25
Q4	FET	2SK 19Y	R15	Resistor	220	ELR25
Q5	FET	2SK19Y	R16	Resistor	3.3K	ELR25
06	FET	3SK74M	R17	Resistor	470	ELR25
07	FET	3SK74K	R18	Resistor	220	ELR25
08	Transistor	2SA1015	R19	Resistor	220	ELR25
Q9	FET	3SK74M	R20	Resistor	220	ELR25
010	Transistor	2SC945P or K	R21	Resistor	1.5K	ELR25
011	Transistor	2SC945P	R22	Resistor	220	ELR25
012	Transistor	2SC945P	R23	Resistor	3.3K	ELR25
013	Transistor	2SA1015	R24	Resistor	2.2K	ELR25
014	Transistor	2SC945P	R25	Resistor	470	ELR25
015	Transistor	2SC945P	R26	Resistor	470	ELR25
016	Transistor	2SC945P	R27	Resistor	100	ELR25
017	Transistor	2SC1645	R28	Resistor	3.3K	ELR25
Q18	Transistor	2SD468	R29	Resistor	3.3K	ELR25
019	Transistor	2SC945P	R30	Resistor	6.8K	ELR25
020	Transistor	2SC2458	R31	Resistor	680	ELR25
			R32	Resistor	100	ELR25
D1	Diode	$1 \mathrm{SS53}$	R33	Resistor	4.7K	ELR25
D2	Diode	15553	R34	Resistor	6.8K	ELR25
D3	Diode	1 1S553	R35	Resistor	6.8K	ELR25
D4	Diode	$15 S 53$	R36	Resistor	6.8K	ELR25
D5	Diode	1 1S553	R37	Resistor	4.7K	ELR25
D6	Diode	$15 S 53$	R38	Resistor	680	ELR25
D7	Diode	$1 \mathrm{SS53}$	R39	Resistor	1K	ELR25
D8	Diode	1 1S553	R40	Resistor	100	ELR25
D9	Diode	1 1S553	R41	Trimmer	4.7K	H0651A
D10	Diode	1 1S553	R42	Trimmer	470	H0651A
D11	Diode	1SS53	R43	Resistor	820	ELR25
D12	Diode	1SS53	R45	Resistor	3.3K	ELR25
D13	Varactor Diode	1 T25	R46	Resistor	100	ELR25
D14	Diode	1 SS53	R47	Resistor	100	ELR25
D15	Diode	1 1S553	R49	Resistor	100	ELR25
D16	Diode	1 1S553	R50	Resistor	100K	ELR25
D17	Diode	$1 \mathrm{SS53}$	R51	Resistor	100K	ELR25
D18	Diode	1 SS53	R52	Resistor	1K	ELR25
D19	Diode	1 SS53	R53	Resistor	1K	ELR25
D20	Diode	1SS53	R54	Resistor	56K	ELR25
D21	Diode	1 1S553	R55	Resistor	100K	ELR25
D22	Diode	1 1S553	R56	Resistor	3.3K	ELR25
D23	Diode	15553	R57	Resistor	100	R25
D24	Diode	15553	R58	Resistor	390	ELR25
D25	Diode	15553	R59	Resistor	330	ELR25
D26	Diode	1 SS53	R60	Resistor	1K	ELR25
D27	Diode	1 1S553	R61	Resistor	4.7K	ELR25
D28	Diode	1SS53	R62	Resistor	10K	ELR25
D29	Diode	1 SS53	R63	Resistor	33K	ELR25
D30	Zener	XZ062	R64	Resistor	1K	ELR25
D31	Diode	1 SS53	R65	Resistor	47K	ELR25
D32	Diode	1 SS53	R66	Trimmer	10K	H0651A
			R67	Resistor	10K	ELR25
R1	Resistor	3.3K ELR25	R68	Resistor	22K	ELR25
R2	Resistor	680 ELR25	R69	Resistor	47K	ELR25
R4	Resistor	1M ELR25	R70	Resistor	2.2K	ELR25

[MAIN]	UNIT			[MAIN]	UNIT		
REF. NO.	DESCRIPTION	PART		REF. NO.	DESCRIPTION	PART	
R71	Resistor	3.3M	ELR25	R137	Trimmer	10K	H1051C
R72	Resistor	820K	ELR25	R138	Resistor	220	ELR25
R73	Resistor	820K	ELR25	R139	Resistor	220K	ELR25
R74	Resistor	100K	ELR25	R140	Resistor	47K	ELR25
R75	Resistor	220	ELR25	R141	Resistor	47K	ELR25
R76	Resistor	220	ELR25	R142	Trimmer	10K	H1051C
R77	Resistor	4.7M	ERC14GJ	R143	Resistor	47K	ELR25
R78	Resistor	1M	ELR25	R144	Resistor	2.2K	ELR25
R79	Resistor	1.8M	ELR25	R147	Resistor	10	R25
R80	Resistor	10K	ELR25	R149	Trimmer	33	H0651A
R82	Trimmer	1M	H1051C	R150	Trimmer	4.7K	H0651A
R83	Resistor	1.8M	R25	R151	Trimmer	4.7K	H0651A
R84	Resistor	1.8	ELR25	R152	Resistor	47K	ELR10
R85	Resistor	22M	ERC14GJ	R153	Resistor	47K	R10
R86	Resistor	10K	ELR25	R154	Resistor	47K	ELR10
R87	Resistor	100	ELR25	R155	Resistor	47K	R10
R88	Resistor	3.3 M	ELR25	R156	Resistor	47K	ELR10
889	Resistor	4.7M	ERC14GJ	R157	Resistor	1K	ELR25
R90	Resistor	22M	ERC14GJ	R159	Resistor	4.7K	ELR25
R91	Trimmer	47K	H0651A	R160	Resistor	10	ELR25
R93	Trimmer	10K	H0651A	R161	Resistor	220	ELR25
R94	Resistor	22K	ELR25	R162	Trimmer	10K	H1051C
R95	Resistor	22K	ELR25	R163	Resistor	4.7K	ELR25
R96	Resistor	3.3M	ELR25	R164	Resistor	8.2K	ELR25
R97	Resistor	470K	ELR25	R166	Resistor	100K	ELR25
R98	Resistor	47K	ELR25	R167	Resistor	4.7K	ELR25
R99	Trimmer	10K	H0651A	R168	Trimmer	100K	H0851
R100	Resistor	100K	ELR25	R169	Resistor	10K	R25
R101	Resistor	4.7K	R25	R170	Resistor	100	R25
R102	Resistor	470	ELR25	R171	Resistor	3.3K	R25
R103	Resistor	100K	R25	R172	Resistor	10K	R25
R104	Resistor	10K	ELR25	R173	Resistor	4.7K	ELR25
R105	Resistor	4.7K	ELR25	R174	Resistor	470	ELR25
R106	Resistor	330	ELR25				
R107	Resistor	22K	ELR25	C1	Barrier Lay	0.047	25V
R108	Resistor	4.7K	ELR25	C2	Ceramic	0.0047	50 V
R109	Resistor	4.7K	ELR25	C3	Ceramic	0.0047	50 V
R110	Resistor	4.7K	ELR25	C4	Barrier Lay	0.047	50 V
R111	Resistor	330	ELR25	C5	Ceramic	0.0047	50 V
R112	Trimmer	1K	H1051C	C6	Ceramic	0.001	50 V
R113	Resistor	100K	ELR25	C7	Barrier Lay	0.047	25 V
R114	Resistor	10K	ELR25	C8	Ceramic	0.0022	50 V
R115	Resistor	10K	ELR25	C9	Barrier Lay	0.047	25V
R116	Resistor	10K	ELR25	C10	Barrier Lay	0.047	25 V
R117	Resistor	4.7K	ELR25	C11	Barrier Lay	0.047	25 V
R118	Resistor	4.7K	ELR25	C12	Barrier Lay	0.047	25V
R119	Resistor	22K	ELR25	C13	Barrier Lay	0.047	25V
R120	Resistor	4.7K	ELR25	C14	Barrier Lay	0.047	25 V
R121	Resistor	10K	ELR25	C15	Ceramic	390P	50 V
R122	Resistor	27K	R25	C16	Ceramic	390P	50 V
R123	Resistor	470	ELR25	C17	Barrier Lay	0.047	25V
R124	Resistor	470	ELR25	C18	Barrier Lay	0.047	25 V
R125	Resistor	1M	ELR25	C19	Barrier Lay	0.047	25 V
R126	Resistor	220K	ELR25	C20	Ceramic	0.0047	50 V
R127	Resistor	1M	ELR25	C21	Ceramic	0.0047	50 V
R128	Resistor	220K	ELR25	C22	Ceramic	0.0047	50 V
R129	Trimmer	1M	H1051C	C23	Ceramic	0.0047	50 V
R130	Resistor	47K	ELR25	C24	Ceramic	0.0047	50 V
R131	Resistor	47K	ELR25	C25	Ceramic	0.001	50 V
R132	Resistor	10K	ELR25	C26	Ceramic	0.0047	50 V
R133	Resistor	100	ELR25	C27	Ceramic	0.001	50 V
R134	Resistor	820	R25	C28	Ceramic	0.0047	50 V
R135	Resistor	22	ELR25	C29	Ceramic	0.0047	50 V
R136	Resistor	10K	ELR25	C30	Ceramic	0.0047	50 V

[MAIN]	UNIT			[MAIN]	UNIT	
REF. NO.	DESCRIPTION	PART NO.		REF. NO.	DESCRIPTION	PART NO.
C31	Ceramic	0.0047	50 V	L12	Choke	LW15
C32	Ceramic	0.001	50 V	L13	Coil	102 L4
C33	Electroly.	10	16 V			
C34	Ceramic	0.0047	50 V	FI1	Mechanical Filter	MF-455-11AZ (or 11GZ)
C35	Ceramic	0.0047	50 V	F12	Ceramic Filter	CFW455HT
C36	Ceramic	22P	50 V	F13	Crystal Filter	9M10A (9.0115MHz)
C37	Dip Mica	47	50 V			
C38	Dip Mica	510	50 V	X1	Crystal	HC-43/U 9.4665MHz
C39	Ceramic	82P UJ	50 V			
C40	Ceramic	0.0047	50 V	S1	Switch	SSS012
C41	Barrier Lay	0.047	25V	S2	Switch	SSS012
C42	Electroly.	4.7	16 V	S3	Switch	SSS012
C43	Electroly.	0.47	50 V	S4	Switch	SSSO12
C44	Barrier Lay	0.1	12V			
C45	Barrier Lay	0.1	12V	B1	P.C. Board	B-476C
C47	Ceramic	0.0047	50 V			
C48	Electroly.	470	10 V	J1	Connector	5045-6A
C49	Ceramic	0.0047	50 V	J2	Connector	5045-4A
C50	Electroly.	470	10 V	J3	Connector	5045-4A
C51	Electroly.	4.7	16 V	$J 4$	Connector	5045-4A
C52	Electroly.	10	16 V	J5	Connector	5045-2A
C53	Ceramic	0.0047	50 V	$J 6$	Connector	5045-10A
C54	Electroly.	0.22	50 V	J7	Connector	5045-4A
C55	Mylar	0.022	50 V	$J 8$	Connector	5045-4A
C56	Mylar	0.022	50 V	J12	Connector	5045-4A
C57	Mylar	0.022	50 V	$J 13$	Connector	5045-4A
C58	Electroly.	10	16 V	J14	Connector	5045-2A
C59	Electroly.	100	10 V	J15	Connector	5045-2A
C60	Barrier Lay	0.1	12 V	J16	Connector	5045-2A
C61	Electroly.	0.47	50 V	J17	Connector	5045-4A
C62	Electroly.	0.47	50 V	J18	Connector	5045-4A
C63	Electroly.	1	50 V	J19	Connector	5045-2A
C64	Electroly.	10	16 V	J20	Connector	5045-2A
C65	Electroly.	1	50 V	J21	Connector	5045-2A
C66	Electroly.	0.47	50 V			
C67	Electroly.	47	10 V			
C68	Barrier Lay	0.1	12V			
C69	Barrier Lay	0.1	12V			
C70	Mylar	0.0022	50 V			
C71	Electroly.	47	16 V			
C72	Electroly.	100	10 V			
C73	Electroly.	470	16 V			
C74	Electroly.	10	16V			
C75	Ceramic	120P RH	50 V			
C76	Ceramic	120P RH	50 V			
C77	Ceramic	120P RH	50 V			
C78	Ceramic	120P RH	50 V			
C79	Ceramic	270P	50 V			
C80	Electroly.	47	16 V			
C81	Electroly.	0.22	$50 \mathrm{~V} \cdot \mathrm{RC} 2$			
C84	Barrier Lay	0.1				
C85	Ceramic	220P			.	
L1	Coil	LS175				
L2	Coil	LS175				
L3	Coil	LS20				
L4	Coil	LS213				
L5	Coil	LS100				
L6	Coil	LS163				
L7	Coil	LS175				
L8	Coil	LS175				
L9	Coil	LS163				
L10	Coil	LS175				
L11	Coil	LS141A				

[DET]	UNIT		[DET]	UNIT		
REF. NO.	DESCRIPTION	PART NO.	REF. NO.	DESCRIPTION	PART NO.	
Q1	Transistor	2SC945P	R44	Trimmer	10K	H0615A
Q2	Transistor	2SC945P	R45	Trimmer	10K	H0615A
Q5	Transistor	2SC1636	R46	Resistor	3.3K	R25
Q6	Transistor	2SC2458 GR	R47	Resistor	4.7K	ELR25
07	Transistor	2SC945P	R48	Resistor	4.7K	ELR25
Q8	Transistor	2SC945P	R49	Resistor	220	ELR25
09	Transistor	2SC945P	R50	Resistor	100	R25
010	Transistor	2SA1015	R51	Resistor	4.7K	R25
			R52	Resistor	1K	ELR25
IC1	IC	NJM4558D	R53	Resistor	2.2K	ELR25
IC2	IC	$\mu \mathrm{PC1037H}$	R54	Resistor	2.2K	ELR25
			R55	Resistor	10K	ELR25
D1	Diode	1 N60	R56	Resistor	10K	R25
D2	Diode	1 SS53	R57	Resistor	2.2K	ELR25
D4	Diode	$1 \mathrm{SS53}$	R58	Resistor	15K	ELR25
D5	Diode	1 N60	R59	Resistor	10K	ELR25
D6	Diode	$15 S 53$	R60	Resistor	10K	ELR25
D7	Diode	1SS53	R61	Resistor	3.3K	ELR25
D8	Diode	$15 S 53$	R62	Resistor	2.7K	ELR25
D9	Diode	1SS53	R63	Resistor	47K	R25
D11	Diode	1 SS53				
D12	Diode	1 SS53	C1	Ceramic	100P	50 V
D13	Diode	1 SS53	C2	Ceramic	0.0047	50 V
D14	Diode	1 SS53	C3	Ceramic	0.0047	50 V
D15	Diode	1 SS53	C4	Ceramic	100P	50 V
D17	Diode	1 SS53	C6	Electroly.	0.47	50 V
	Diode	1SS53	C7	Electroly.	0.1	12 V
			C8	Electroly.	10	25 V
R1	Resistor	4.7K R25	C9	Ceramic	0.0047	50 V
R3	Resistor	22K ELR25	C10	Electroly.	10	50 V
R4	Resistor	100 R25	C11	Electroly.	4.7	35 V RC2
R8	Resistor	3.3M ELR25	C12	Electroly.	1	10 V
R9	Resistor	47K ELR25	C14	Electroly.	4.7	35 V RC2
R12	Resistor	1K ELR25	C15	Ceramic	100p	50 V
R13	Resistor	4.7K ELR25	C16	Ceramic	100P	50 V
R14	Resistor	2.2K ELR25	C17	Ceramic	0.0047	50 V
R15	Resistor	4.7K ELR25	C18	Barrier Lay	0.047	25V
R16	Resistor	47 ELR25	C19	Barrier Lay	0.1	12V
R17	Resistor	47K ELR25	C20	Barrier Lay	0.047	25 V
R18	Resistor	100K ELR25	C22	Electroly.	4.7 BP	50 V
R19	Resistor	10K ELR25	C23	Electroly.	10	25 V
R20	Resistor	10K ELR25	C24	Mylar	0.01	50 V
R21	Resistor	10K ELR25	C25	Mylar	0.01	50 V
R22	Resistor	10K ELR25	C26	Barrier Lay	0.0068	50 V
R23	Resistor	10K ELR25	C27	Electroly.	0.1	35 V RC2
R24	Resistor	10K ELR25	C28	Electroly.	47	10 V
R25	Resistor	10K ELR25	C29	Ceramic	47P	50 V
R26	Resistor	22K ELR25	C30	Ceramic	0.0047	50 V
R27	Resistor	22K ELR25	C31	Ceramic	0.0047	50 V
R28	Resistor	100K ELR25	C32	Electroly.	47	10 V
R29	Resistor	100K R 10	C33	Ceramic	0.001	50 V
R30	Resistor	3.3M ELR25	C34	Ceramic	0.0047	50 V
R31	Resistor	10K ELR25	C35	Ceramic	0.0047	50 V
R32	Resistor	10K ELR25	C36	Ceramic	0.0047	50 V
R33	Resistor	1.8M ELR25	C37	Ceramic	0.0047	50 V
R34	Resistor	2.2K ELR25	C38	Ceramic	0.0047	50 V
R36	Resistor	6.8K ELR25	C39	Ceramic	56P	50 V
R37	Resistor	6.8K ELR25	C40	Trimmer	CV05E30	001
R38	Resistor	6.8K R10	C41	Dip Mica	150P	50 V
R39	Resistor	1 K ELR10	C42	Dip Mica	150P	50 V
R40	Resistor	1 K ELR10	C43	Ceramic	0.0047	50 V
R41	Resistor	1K ELR25	C44	Ceramic	120P	50 V
R42	Resistor	100K ELR25	C45	Electroly.	1	50 V
R43	Resistor	47K ELR25	C46	Barrier Lay	0.047	25V

[DET]	UNIT	
REF. NO.	DESCRIPTION	PART NO.
L1	Coil	LS67
L2	Coil	LS133
L3	Coil	LS212
L4	Coil	LS134
B1	P.C. Board	B-477C
J1	Connector	$5045-4 A$
J2	Connector	$5045-4 A$
J3	Connector	$5045-4 A$
J4	Connector	RT-01T-13B
P1	Connector	$5250-10 \mathrm{~A}$
P2	Connector	$5250-2 A$
X1		Crystal

[PA] UNIT
REF.NO. DESCRIPTION PARTNO.

Q1	Transistor	2SC1971	
O2	Transistor	2SC1945	
Q3	Transistor	2SC1945	
04	Transistor	2SC2097	
Q5	Transistor	2SC2097	
Q6	Transistor	2SD313	
Q7	Transistor	2SC2120	
D1	Diode	MV5	
D2	Diode	MV11	
D4	Diode	GP-08	
D5	Diode	15 CD 11	
R1	Resistor	220	R25
R2	Resistor	390	R25
R3	Resistor	10	R25
R4	Resistor	100	R25
R5	Resistor	2.2	R25
R7	Resistor	3.3	R25
R8	Resistor	22	R25
R9	Resistor	22	R25
R10	Resistor	120	R50
R11	Resistor	120	R50
R12	Resistor	68	R50
R13	Resistor	2.2 RSF	2B
R14	Resistor	2.2 RSF	2B
R15	Resistor	10	R50
R16	Resistor	10	R50
R17	Resistor	3.3	1W
R18	Resistor	3.3	1W
R19	Resistor	10	R50
R20	Resistor	220	R25
R21	Trimmer	500	FR10
R22	Resistor	47	1W
R23	Resistor	22	R25
R24	Resistor	2.2K	R25
R25	Resistor	1.8	R25
R26	Resistor	100	FR10
C1	Ceramic	0.0022	50 V
C2	Barrier Lay	0.0012	50 V
C3	Ceramic	100P	50 V
C4	Barrier	0.1	50 V
C5	Mylar	0.01	50 V
C6	Mylar	0.01	50 V
C7	Cylinder	100P	50 V
C8	Barrier Lay	0.1	12 V
C9	Monolythic	6800P	50 V
C10	Monolythic	6800P	50 V
C11	Ceramic	470P SL	50 V
C12	Ceramic	470P SL	50 V
C13	Ceramic	470P SL	50 V
C14	Ceramic	220P	500 V
C15	Ceramic	220P	500 V
C16	Ceramic	330P	500 V
C17	Ceramic	39P	500 V
C18	Electroly.	1000	16 V
C19	Electroly.	220	16 V
C20	Barrier Lay	0.1	50 V
C21	Ceramic	0.0047	50 V
C22	Electroly.	10	16 V
C23	Electroly.	470	16 V
C24	Barrier Lay	0.1	12 V
C25	Barrier Lay	0.1	12V

[PA]		UNIT	
REF. NO.	DESCRIPTION	PART NO.	
C26	Barrier Lay	0.1	12V
C27	Barrier Lay	0.1	12 V
L1	Choke	LW-22	
L2	Trans	LR117	
L3	Choke	LW18	
L4	Trans	LR113	
L5	Choke	LW18	
L6	Choke	LW18	
L7	Trans	LR83	
L8	Trans	LR114	
S1	Thermal	OHD70M	
J1	Connector	LLR-6	
P1	Connector	5250-02A	
P2	Connector	$5250-04 A$	
P3	Connector	5250-04A	
P4	Connector	1545R-1	
P5	Connector	SMF-01T-1.3	
B1	P.C. Board	B-479A	

[FILTER] UNIT

REF. NO. DESCRIPTION PART NO.

D1	Diode	1N60
D2	Diode	1N60
D3	Diode	GP08B
L1	Coil	LA139
L2	Coil	LR49
L3	Coil	LR50
L5	Coil	LR52
L6	Coil	LR51
L7	Coil	LR90
L8	Coil	LR91
L9	Coil	LR53
L10	Coil	LR54
L11	Coil	LR55
L12	Coil	LR56
L13	Coil	LR57
L14	Coil	LR58
L15	Coil	LR123
L16	Coil	L4
L17	Coil	LA139

R1	Resistor	68	R25
R3	Resistor	47K	ELR25
R4	Resistor	47K	ELR25
R5	Resistor	47K	ELR25
R6	Resistor	12K	ELR25
R7	Resistor	12K	ELR25
C1	Dip Mica	DM19	680P 500V 1CR
C2	Ceramic	DD31	O-SL 82P 500V02
C3	Dip Mica	DM20	1200P 500V 1CR
C4	Ceramic	DD31	2-SL220P 500V02
C5	Dip Mica	DM19	680P 500V 1CR
C6	Dip Mica	DM19	470P 500V 1CR
C7	Ceramic	DD31-2	2-SL120P 500V02
C8	Dip Mica	DM19	680P 500V 1CR
C9	Ceramic	DD35-0	-SL 39P 500V02
C10	Dip Mica	DM19	390P 500V 1CR
C11	Dip Mica	DM19	390P 500V 1CR
C12	Ceramic	DD38-0	-SL 27P 500V02
C13	Dip Mica	DM19	470P 500V 1CR
C14	Ceramic	DD38	-SL 68P 500V02
C15	Ceramic	DD31	2-SL220P 500V02
C16	Ceramic	DD31	2-SL180P 500V02
C17	Ceramic	DD35-	-SL 18P 500V02
C18	Ceramic	DD31	4-SL330P 500V02
C19	Ceramic	DD36-0	-SL 56P 500V02
C20	Ceramic	DD31-0	O-SL200P 500V02
C21	Ceramic	DD38-	-SL100P 500V02
C22	Ceramic	DD35-	O-SL 10P 500V02
C23	Ceramic	DD31-2	2-SL150P 500V02
C24	Ceramic	DD35-	O-SL 39P 500V02
C25	Ceramic	DD31-0	-SL150P 500V02
C26	Ceramic	DD35-	-SL 47P 500V02
C27	Ceramic	DD35-0	-SL 15P 500V02
C28	Ceramic	DD31-0	-SL120P 500V02
C29	Ceramic	DD35	-SL 27P 500V02
C30	Ceramic	DD38-	-SL100P 500V02
C31	Trimmer	FCV-I	W20X40
C32	Ceramic	220P	50 V
C33	Ceramic	100P	50 V
C34	Ceramic	100P	50 V
C35	Ceramic	100P	50 V
C36	Ceramic	100P	50V

REF. NO.	DESCRIPTION	PART NO.	
C37	Electrolytic	220ر	16 V
C38	Ceramic	0.0047	50 V
C39	Ceramic	0.0047	50 V
B1	P.C. Board	B-478D	
RL1	Relay	SR-202	
$J 1$	Connector	5045-4A	
J3	Connector	5045-4A	
J4	Connector	5045-4A	
P1	Connector	5250-6A	
P2	Connector	5250-6A	
P3	Connector	5250-2A	
S1	Switch	SRY 202C	

[LOGIC] UNIT
REF. NO. DESCRIPTION PARTNO.

IC1	IC	μ PD650-80
IC2	IC	μ PDP4071C
IC3	IC	μ PDD4011C
IC4	IC	TC4013C
IC5	IC	μ PDD4013C
IC6	IC	μ MPD4066C
IC7	IC	μ PD4030C
IC8	IC	μ PD4069C
IC9	IC	μ A78L05ACC
Q1	Transistor	2SC945
Q2	Transistor	2SC945
O3	Transistor	2SA798
Q4	Transistor	2SC945
Q5	Transistor	2SA1048

D2	Diode	1SS53
D3	Diode	1SS53
D4	Diode	1SS53
D5	Diode	1SS53
D6	Diode	1SS53
D7	Diode	1SS53
D8	Diode	1SS53
D9	Diode	1SS53
D10	Diode	1SS53
D11	Diode	1SS53
D12	Diode	1SS53
D13	Diode	1SS53
D14	Diode	1SS53
D15	Diode	1SS53
D16	Diode	1SS53
D17	Diode	1SS53
D18	Diode	1SS53
D20	Diode	1SS53
D21	Diode	1SS53
D22	Diode	1N60
D23	Diode	1N60
D24	Diode	1N60
D25	Diode	1N60
D26	Diode	1SS53
D27	Diode	1SS53
D28	Diode	1SS53
D29	Diode	1SS53
X1	Ceralock	CSB430A

R2	Resistor	15	R25
R3	Resistor	4.7K	ELR25
R4	Resistor	100K	ELR25
R6	Resistor	820K	ELR25
R7	Resistor	3.3M	ELR25
R8	Resistor	820K	ELR25
R9	Resistor	47K	ELR25
R10	Resistor	47K	ELR25
R11	Resistor	1M	ELR25
R11	Resistor	220K	ELR25
R12	R13		
R13	Resistor	1M	R25
R14	Resistor	220K	R25
R15	Resistor	47K	ELR25
R16	Resistor	10K	ELR25
R17	Resistor	10K	ELR25
R18	Resistor	150K	ELR25
R19	Resistor	100K	ELR25
R20	Resistor	2.7K	ELR25

REF. NO.	DESCRIPTION	PART NO.	
IC1	IC	$\mu \mathrm{PD} 549 \mathrm{C}$	
DS1	FIP	9-BT-12	
Q1	Transistor	2SC1214C	
D1	Diode	15953	
D2	Diode	15953	
D3	Zener	WZ040	
D4	Zener	WZ056	
D5	Diode	1SS53	
D6	Diode	1 SS53	
L1	Transformer	LB-119	
P1	Connector	5250-8A	
$J 1$	Connector	5045-2A	
J2	Connector	5045-2A	
R1	Resistor	22	ELR25
R2	Resistor	2.7K	ELR25
R3	Resistor	680	ELR25
R4	Resistor	10K	ELR25
R5	Resistor	RM6-473	
R6	Resistor	RM8-473	
R7	Resistor	10	ELR25
R8	Resistor	6.8K	ELR25
R9	Resistor	47K	R25
C1	Electrolytic	47	16 V
C2	Ceramic	0.01	50 V
C3	Electroly.	47	10V
C4	Electroly.	47	16 V
C5	Ceramic	0.001	50 V
C6	Electroly.	1000	6.3 V
C8	Ceramic	0.0047	50 V
B1	P.C. Board	B-487C	

[PLL] UNIT

REF. NO. DESCRIPTION PART NO.

L2	Coil	LS191
L3	Coil	LS3A
L4	Coil	LS3A
L5	Choke	100 (ELO810SKI-100K)
L6	Choke	2R7 (ELO810SKI-2R7)
L7	Choke	LW19
L8	Coil	LB113
L9	Coil	LS3A
L10	Choke	LS206
L11	Choke	R70 LB4
J1	Connector	5045-6A
J2	Connector	$5045-4 A$
P1	Connector	$5250-2 A$
B1	P.C. Board	B-471C

[PRE MIX] UNIT
REF. NO. DESCRIPTION PART NO.

01	Transistor	2SC945P
02	Transistor	2SC945P
03	Transistor	2SC945P
04	Transistor	2SC945P
05	Transistor	2SC945P
06	Transistor	2SC945P
Q7	Transistor	2SC945P
08	Transistor	2SC945P
09	Transistor	2SC945P
Q10	Transistor	2SC945P
011	Transistor	2SC945P
D1	Diode	1SS99
D2	Diode	1SS99
D3	Diode	1SS99
D4	Diode	1SS99
D5	Diode	1 SS53
D6	Diode	1SS53
D7	Diode	1 SS53
D8	Diode	1 SS53
D9	Diode	1SS53
D10	Diode	1 SS53
D11	Diode	1 SS53
D12	Diode	1SS53
D13	Diode	1 SS53
D14	Diode	1 SS53
D15	Diode	1 SS53
D16	Diode	1 SS53
D17	Diode	1 SS53
D18	Diode	1 SS53
D19	Diode	1 SS53
D20	Diode	1 SS53
D21	Diode	1 SS53
D22	Diode	1 SS53
D23	Diode	1SS53
D24	Diode	1SS53
D25	Diode	1 SS53
D26	Diode	1SS53
D27	Diode	1SS53
D28	Diode	1SS53
D29	Diode	1SS53
D30	Diode	1SS53
D31	Diode	1SS53
D32	Diode	1SS53
D33	Diode	1SS53
D34	Diode	1SS53
D35	Diode	1SS53
D36	Diode	1 SS53
D37	Diode	1SS53
$\times 1$	Crystal	HC-18/U 29.9315 MHz
$\times 2$	Crystal	HC-18/U 33.4315MHz
$\times 3$	Crystal	HC-18/U 36.4315MHz
$\times 4$	Crystal	HC-18/U 40.4315MHz
$\times 5$	Crystal	HC-18/U 44.4315MHz
$\times 6$	Crystal	HC-18/U 47.4315MHz
$\times 7$	Crystal	HC-18/U 50.9315MHz
$\times 8$	Crystal	HC-18/U 54.4315MHz
$\times 9$	Crystal	HC-18/U 54.9315MHz
$\times 10$	Crystal	HC-18/U 55.4315MHz
$\times 11$	Crystal	HC-18/U 55.9315MHz
R1	Resistor	4.7K ELR25
R2	Resistor	22K ELR25

- [PRE MIX] UNIT

REF. NO. DESCRIPTION PART NO.

R3	Resistor	470	ELR25
R4	Resistor	100	ELR25
R5	Resistor	4.7K	ELR25
R6	Resistor	22K	ELR25
R7	Resistor	470	ELR25
R8	Resistor	100	ELR25
R9	Resistor	4.7K	ELR25
R10	Resistor	22K	ELR25
R11	Resistor	470	ELR25
R12	Resistor	100	ELR25
R13	Resistor	4.7K	ELR25
R14	Resistor	22K	ELR25
R15	Resistor	470	ELR25
R16	Resistor	100	ELR25
R17	Resistor	4.7K	ELR25
R18	Resistor	22K	ELR25
R19	Resistor	390	ELR25
R20	Resistor	100	ELR25
R21	Resistor	4.7K	ELR25
R22	Resistor	22K	ELR25
R23	Resistor	390	ELR25
R24	Resistor	100	R25
R25	Resistor	4.7K	ELR25
R26	Resistor	22K	ELR25
R27	Resistor	390	ELR25
R28	Resistor	100	ELR25
R29	Resistor	4.7K	ELR25
R30	Resistor	22K	ELR25
R31	Resistor	390	ELR25
R32	Resistor	100	ELR25
R33	Resistor	4.7K	ELR25
R34	Resistor	22K	ELR25
R35	Resistor	390	ELR25
R36	Resistor	100	ELR25
R37	Resistor	4.7K	ELR25
R38	Resistor	22K	ELR25
R39	Resistor	390	ELR25
R40	Resistor	100	ELR25
R41	Resistor	4.7K	ELR25
R42	Resistor	22K	ELR25
R43	Resistor	390	ELR25
R44	Resistor	100	ELR25
R46	Resistor	47	R25
R47	Resistor	120	ELR25
R48	Resistor	33	ELR25
C1	Ceramic	120P	50 V
C2	Ceramic	0.0047	50 V
C3	Ceramic	0.0047	50 V
C4	Ceramic	100P	50 V
C5	Ceramic	0.0047	50 V
C6	Ceramic	0.0047	50 V
C7	Ceramic	68P	50 V
C8	Ceramic	0.0047	50 V
C9	Ceramic	0.0047	50 V
C10	Ceramic	68P	50 V
C11	Ceramic	0.0047	50 V
C12	Ceramic	0.0047	50 V
C13	Ceramic	56P	50 V
C14	Ceramic	0.0047	50 V
C15	Ceramic	0.0047	50 V
C16	Ceramic	47P	50 V
C17	Ceramic	0.0047	50 V
C18	Ceramic	0.0047	50 V

[PRE MIX] UNIT
REF. NO. DESCRIPTION PARTNO.

C19	Ceramic	43P	50 V
C20	Ceramic	0.0047	50 V
C21	Ceramic	0.0047	50 V
C22	Ceramic	36P	50 V
C23	Ceramic	0.0047	50 V
C24	Ceramic	0.0047	50 V
C25	Ceramic	36P	50 V
C26	Ceramic	0.0047	50 V
C27	Ceramic	0.0047	50 V
C28	Ceramic	36P	50 V
C29	Ceramic	0.0047	50 V
C30	Ceramic	0.0047	50 V
C31	Ceramic	36P	50 V
C32	Ceramic	0.0047	50 V
C33	Ceramic	0.0047	50 V
C34	Electroly	10μ	16 V
C35	Ceramic	0.0047	50 V
C36	Ceramic	0.0047	50 V
C37	Ceramic	0.0047	50 V
C38	Barrier Lay	0.047	25 V
C39	Barrier Lay	0.047	25 V
C40	Barrier Lay	0.047	25V
C41	Barrier Lay	0.047	25 V
C42	Barrier Lay	0.047	25V
C43	Barrier Lay	0.047	25V
C44	Barrier Lay	0.047	25V
C45	Barrier Lay	0.047	25V
C46	Barrier Lay	0.047	25V
C47	Barrier Lay	0.047	25V
C48	Ceramic	0.0047	50 V
C49	Ceramic	0.0047	50 V
C50	Ceramic	0.0047	50 V
C51	Ceramic	0.0047	50 V
C52	Ceramic	0.0047	50 V
C53	Ceramic	0.0047	50 V
C54	Barrier Lay	0.047	25 V
C55	Ceramic	0.0047	50 V
C56	Ceramic	0.0047	50 V
C57	Barrier Lay	0.047	25 V
L1	Coil	LS193	
L2	Coil	LS193	
L3	Coil	LS193	
L4	Coil	LS193	
L5	Coil	LS193	
L6	Coil	LS193	
L7	Coil	LS193	
L8	Coil	LS193	
L9	Coil	LS193	
L10	Coil	LS193	
L11	Coil	LS193	
L12	Coil	LS116	
L13	Coil	LS116	
L14	Choke	EL0810	1-100K
L15	Choke	EL0810	1-100K
B1	P.C. Board	B-472C	
J1	Connector	5045-8A	
J2	Connector	5045-10	
J3	Connector	5045-6A	
J4	Connector	5045-6A	
J5	Connector	5045-2A	
J6	Connector	5045-6A	

[PRE MIX] UNIT
REF. NO. DESCRIPTION PARTNO.
$J 7$ Connector 5045-2A
J8 Connector 5045-2A
[BPF] UNIT
REF. NO. DESCRIPTION PART NO.

01	Transistor	2SC763	
02	Transistor	2SC763	
Q3	Transistor	2SC2053	
D1	Diode	1SS53	
D2	Diode	15553	
D3	Diode	15553	
D4	Diode	1SS53	
D5	Diode	1 SS53	
D6	Diode	15553	
D7	Diode	1 SS53	
D8	Diode	15553	
D9	Diode	1SS53	
D10	Diode	15553	
D11	Diode	15553	
D12	Diode	1 1S553	
D13	Diode	15553	
D14	Diode	1SS53	
D15	Diode	15553	
D16	Diode	1SS53	
R1	Resistor	1K	ELR25
R2	Resistor	2.2K	ELR25
R3	Resistor	1K	ELR25
R4	Resistor	2.2K	ELR25
R5	Resistor	1K	ELR25
R6	Resistor	2.2K	ELR25
R7	Resistor	1K	ELR25
R8	Resistor	2.2K	ELR25
R9	Resistor	1K	ELR25
R10	Resistor	2.2K	ELR25
R11	Resistor	1K	ELR25
R12	Resistor	2.2K	ELR25
R13	Resistor	1K	ELR25
R14	Resistor	2.2K	ELR25
R15	Resistor	1K	ELR25
R16	Resistor	2.2K	ELR25
R17	Resistor	2.2K	ELR25
R18	Resistor	1K	ELR25
R19	Resistor	2.2K	ELR25
R20	Resistor	10K	ELR25
R21	Resistor	1 K	ELR25
R22	Resistor	680	ELR25
R23	Resistor	470	ELR25
R24	Resistor	22	ELR25
R25	Resistor	3.3K	ELR25
R26	Resistor	100	ELR25
C1	Ceramic	120P	50 V
C2	Ceramic	22P	50 V
C3	Ceramic	56P	50 V
C3	Ceramic	100P	50 V
C5	Ceramic	62P	50 V
C6	Ceramic	24P	50 V
C7	Ceramic	120P	50 V
C9	Ceramic	47P	50 V
C10	Ceramic	51P	50 V
C11	Ceramic	68P	50 V
C12	Ceramic	15P	50 V
C13	Ceramic	62P	50 V
C14	Barrier Lay	0.047	25 V
C15	Barrier Lay	0.047	25V
C16	Ceramic	0.0047	50 V
C17	Ceramic	39P	50 V

[BPF] UNIT
REF. NO. DESCRIPTION PART NO.

C18	Ceramic	1P	50 V
C19	Ceramic	39P	50 V
C20	Ceramic	0.0047	50 V
C21	Barrier Lay	0.047	25 V
C22	Ceramic	0.0047	50 V
C23	Ceramic	33P	50 V
C24	Ceramic	0.75P	50 V
C25	Ceramic	33P	50 V
C26	Ceramic	0.0047	50 V
C27	Barrier Lay	0.047	25 V
C28	Ceramic	0.0047	50 V
C29	Ceramic	30P	50 V
C30	Ceramic	0.75P	50 V
C31	Ceramic	30P	50 V
C32	Ceramic	0.0047	50 V
C33	Barrier Lay	0.047	25 V
C34	Ceramic	0.0047	50 V
C35	Ceramic	27P	50 V
C36	Ceramic	0.75P	50 V
C37	Ceramic	27P	50 V
C38	Ceramic	0.0047	50 V
C39	Barrier Lay	0.047	25 V
C40	Ceramic	0.0047	50 V
C41	Ceramic	24P	50 V
C42	Ceramic	0.5P	50 V
C43	Ceramic	24P	50 V
C44	Ceramic	0.0047	50 V
C45	Barrier Lay	0.047	25 V
C46	Ceramic	0.0047	50 V
C47	Ceramic	22P	50 V
C48	Ceramic	0.5P	50 V
C49	Ceramic	22P	50 V
C50	Ceramic	0.0047	50 V
C51	Barrier Lay	0.047	25 V
C52	Ceramic	0.0047	50 V
C53	Ceramic	18P	50 V
C54	Ceramic	0.5P	50 V
C55	Ceramic	18P	50 V
C56	Ceramic	0.0047	50 V
C57	Barrier Lay	0.047	25 V
C58	Ceramic	0.0047	50 V
C59	Ceramic	15P	50 V
C60	Ceramic	0.75P	50 V
C61	Ceramic	15P	50 V
C62	Ceramic	0.0047	50 V
C63	Cylinder	47P	50 V
C64	Ceramic	33P	50 V
C65	Ceramic	0.0047	50 V
C66	Barrier Lay	0.047	25 V
C67	Ceramic	0.0047	50 V
C68	Ceramic	330P	50 V
C69	Barrier Lay	0.0015	50 V
C70	Ceramic	330P	50V
11	Coil	LS-201	
L2	Coil	LS-202	
13	Coil	LS-134	
14	Coil	LS-204	
L5	Coil	LS-205	
$L 6$	Coil	LS-192	
$L 7$	Coil	LS-192	
18	Coil	LS-192	
L9	Coil	LS-192	
L10	Coil	LS-192	

[BPF]	UNIT	
REF. NO.	DESCRIPTION	PART NO.
L11	Coil	LS-192
L12	Coil	LS-192
L13	Coil	LS-192
L14	Coil	LS-192
L15	Coil	LS-192
L16	Coil	LS-192
L17	Coil	LS-192
L18	Coil	LS-192
L19	Coil	LS-192
L20	Coil	LS-192
L21	Coil	LS-192
L22	Coil	LR-85A
L23	Coil	LS-208
P1	Connector	$5250-10 A$
P2	Connector	$5250-02 A$
P3	Connector	$5250-02 A$
B1	P.C. Board	B-473C

[SENSOR] UNIT

REF. NO. DESCRIPTION PART NO.

IC1	Photo. Int.	ON1105	
IC2	Photo. Int.	ON1105	
R1	Resistor	330	R25
R2	Trimmer	RGP056	30K
R3	Trimmer	RGP056	30K
P1	Connector	$5250-4 A$	
B1	P.C. Board	B-492	

ICOM ICOM INCORPORATED

Downloaded by

 RadioAmateur.EU

『フㄴ
-

- L 1
 - Ь几
๓ \square 几
ロ几
ロ 1 - $\quad 1$
『 ひ几

$\square \square$ \square
$\square \square$
\square

い い
$\Pi \Pi$
－－－－

目 ${ }^{200}$

с．ШШШШ
\cdots

园

- RIT BOARD

- SENSOR BOARD

1	A
-	

LOGIC UNIT

PLL UNIT

∇

\cdots
N

-

N

REGULATOR UNIT

MIC BOARD
SENSOR BOARD
RIT BOARD

RF UNIT \rightarrow
BPF UNIT

PREMIX UNIT
PLL UNIT

CD ICOM

ICOM INCORPORATED

